
Construction of a HighConstruction of a HighConstruction of a HighConstruction of a High----Performance FFTPerformance FFTPerformance FFTPerformance FFT
Mathematics, Design, and Implementation Guide

Author: Eric Postpischil (http://edp.org)
Version: 2.1
Date: August 8, 2004

The FFT algorithm for computing the DFT is well known and provides an O(n log n)-
time implementation of the DFT. However, constructing a high-performance FFT imple-
mentation that executes at the best possible speed requires careful and efficient organiza-
tion.

This paper describes the mathematical composition of an FFT, some overall design con-
siderations for implementing high-performance FFTs, and specific considerations for im-
plementing a high-performance FFT on an AltiVec processor.

Version Date Changes
2.0 August 25, 2003 First public release.
2.1 August 8, 2004 More rigorous definition of r. Minor edits.

© 2003-2004 by Eric Postpischil, http://edp.org, edp@edp.org .

Construction of a High-Performance FFT

ii 2.1, August 8, 2004

ContentsContentsContentsContents
1 INTRODUCTION.. 1

1.1 WHAT IS AN FFT?.. 1
1.2 WHAT ARE WE GOING TO DO?... 1
1.3 TARGET ARCHITECTURE.. 2
1.4 TARGET PROCESSOR.. 3
1.5 INTRODUCTORY NOTES.. 3

1.5.1 Source Code Notation and Mathematical Notation... 3
1.5.2 Complex Number Representation .. 3
1.5.3 Miscellaneous .. 4
1.5.4 Bit-Reversal Permutation... 4

2 MATHEMATICAL COMPOSITION OF AN FFT... 4

2.1 DEFINITIONS .. 4
2.1.1 Domains ... 4
2.1.2 Notation.. 5
2.1.3 Roots of 1 ... 5
2.1.4 Discrete Fourier Transform (DFT) ... 5
2.1.5 Bit-Reversal Function, r(k) .. 5

2.2 1X
 WITH R(K)... 6

2.3 INTRODUCTION TO THE FFT PROCEDURE.. 7
2.4 PROOF OF THE FFT PROCEDURE.. 8
2.5 CONCLUSIONS.. 9

3 INITIAL DESIGN ... 10

3.1 STARTING THE FFT KERNEL.. 10
3.1.1 Implement C Code From the Mathematics .. 10
3.1.2 Group Butterfly Calculations Together ... 10
3.1.3 Create a Butterfly Subroutine .. 11

3.2 STRUCTURING THE FFT ... 12
3.2.1 General .. 12
3.2.2 First Pass ... 13
3.2.3 Summary .. 13

3.3 PREPARING THE KERNEL.. 13
3.3.1 Separate the First Pass .. 13
3.3.2 Eliminate Fictitious Mathematical Vectors ... 14
3.3.3 Specialize Values for the First Pass... 14
3.3.4 Discuss the Last Two Passes.. 15
3.3.5 Separate the Last Two Passes.. 15
3.3.6 Use Butterfly Specializations ... 17

4 DESIGNING BUTTERFLY RO UTINES ... 18

4.1 PREPARED CONSTANTS.. 18
4.1.1 Internal Weights Are Built into Routine... 18

 Construction of a High-Performance FFT

2.1, August 8, 2004 iii

4.1.2 External Weights Are Stored in An Array.. 19
4.1.3 Common Weights ... 19

4.2 GENERAL RADIX -4 BUTTERFLY ALGORITHM .. 19
4.2.1 Goedecker’s Algorithm .. 19
4.2.2 Division by Zero... 21

4.3 BUTTERFLY ROUTINES... 21
4.3.1 FFT4_1WeightPerCall .. 21
4.3.2 FFT4_0Weights.. 23
4.3.3 FFT8_0Weights.. 24
4.3.4 FFT4_1WeightPerIteration ... 26
4.3.5 FFT4_Final.. 28

5 GENERATING WEIGHTS.. 30

5.1 PREREQUISITES.. 31
5.2 SUBROUTINES.. 31
5.3 GENERATE COMMON WEIGHTS ... 32

6 MORE KERNEL CHANGES .. 33

6.1 GROUP BUTTERFLIES BY WEIGHT.. 34
6.1.1 Calculate New Loop Bounds.. 34
6.1.2 Check the New Calculation Order... 35
6.1.3 Optimize the Code.. 35

6.2 SEPARATE THE WEIGHTLESS BUTTERFLIES.. 35
6.2.1 Create A Variant of FFT4_0Weights... 36

6.3 UPDATE THE KERNEL... 36
6.4 INCORPORATE BIT-REVERSAL PERMUTATION ... 38

6.4.1 Read Groups of Elements and Write in Bit-Reversed Locations 38
6.4.2 Problems .. 38
6.4.3 Terminology ... 38
6.4.4 Solution .. 39
6.4.5 Index Table Implementation .. 41
6.4.6 C Implementation... 42
6.4.7 AltiVec Implementation.. 45
6.4.8 Generate Final Weights ... 48
6.4.9 Update Kernel.. 49

6.5 FFT KERNEL ROUTINE .. 50

7 OUT-OF-CACHE PERFORMANCE.. 51

7.1 INTRODUCTION.. 51
7.1.1 Motorola PowerPC CPU 7400 Cache Architecture.. 51
7.1.2 Cache Problems... 52

7.2 THE CACHE SIZE PROBLEM.. 52
7.3 THE CACHE SET SIZE PROBLEM... 52
7.4 THE CACHE BLOCK SIZE PROBLEM.. 54
7.5 STRUCTURING THE MULTIPLE-STAGE FFT .. 57

7.5.1 Summary .. 58
7.5.2 PowerPC CPU 7400 Design.. 58

Construction of a High-Performance FFT

iv 2.1, August 8, 2004

7.6 STAGE DESIGNS... 59
7.6.1 First Stage.. 60
7.6.2 General Stages ... 65
7.6.3 Penultimate Stage .. 65
7.6.4 Final Stage... 70

7.7 CACHE OPERATIONS.. 70
7.7.1 Cache Operations .. 71
7.7.2 Allocate Buffer in Cache.. 71
7.7.3 Load Data Being Gathered.. 72
7.7.4 Remove Data After Gathering ... 72
7.7.5 Write Results Without Reading .. 72
7.7.6 Remove Data After Scattering ... 72
7.7.7 Remove Buffer.. 72
7.7.8 Penultimate Stage .. 73
7.7.9 Final Stage... 73
7.7.10 After the FFT.. 73

8 REVERSE DFT.. 73

8.1 CONJUGATING ELEMENTS.. 74
8.2 SCALING IN THE BUTTERFLY ROUTINES... 75
8.3 CHANGING THE KERNELS.. 78
8.4 ALTERNATIVES .. 80

9 EXECUTING THE FFT ... 81

9.1 CONSTANTS... 81
9.2 FFT ROUTINE .. 83

A GENERATING RADIX -8 BUTTERFLY WITH MAPLE ... 83

B NOTES ABOUT C SOURCE CODE.. 86

B.1 INDENTATION .. 86
B.2 COMPLEX NUMBER REPRESENTATION.. 86
B.3 MEMORY ALLOCATION AND ALIGNMENT ... 87
B.4 BIT-REVERSED BYTES... 87

 Construction of a High-Performance FFT

2.1, August 8, 2004 v

Source Code DisplaysSource Code DisplaysSource Code DisplaysSource Code Displays
FFT DIRECTLY FROM MATHEMATICS ... 10
FFT_BUTTERFLIES.. 11
FIRST FFT KERNEL.. 12
EXPANDED FFT KERNEL... 17
FFT KERNEL USING SPECIALIZED BUTTERFLY ROUTINES... 18
GOEDECKER’S ALGORITHM ... 20
FFT4_1WEIGHTPERCALL ... 22
FFT4_0WEIGHTS... 23
FFT8_0WEIGHTS... 24
FFT4_1WEIGHTPERITERATION... 27
FFT4_FINAL .. 29
TWOPI.. 31
COMMONWEIGHT .. 31
ILOG2... 31
RW, REVERSE WORD.. 31
R, CALCULATE R(K).. 32
GENERATECOMMONWEIGHTS... 33
FFT KERNEL WITH REORDERED LOOPS AND SEPARATED LOOP FOR K0=0..................................... 37
FINAL INDICES.. 41
GENERATEFINAL INDICES... 41
CONSTRUCT... 42
FFT4_FINAL WITH BIT-REVERSAL PERMUTATION ... 42
READELEMENTS .. 43
WRITEREVERSEDELEMENTS.. 44
PERFORMBUTTERFLIES.. 44
ALTIVEC READELEMENTS, PART I .. 46
ALTIVEC READELEMENTS, PART II... 46
ALTIVEC WRITEREVERSEDELEMENTS .. 47
ALTIVEC PERFORMBUTTERFLIES.. 47
FINALWEIGHTS.. 48
GENERATEFINALWEIGHTS .. 49
FFT KERNEL WITH FINAL INDICES AND WEIGHTS... 50
FFT KERNEL ROUTINE .. 50
CACHE-BLOCK CLUSTERING GENERATEFINAL INDICES... 55
MULTIPLE-STAGE KERNEL .. 60
FFT_FIRSTSTAGE PROTOTYPE.. 60
GATHER ... 61
SCATTER.. 61
FIRST FFT_FIRSTSTAGE.. 61
FFT_FIRSTSTAGE.. 64
FFT_PENULTIMATESTAGEPROTOTYPE.. 65
EARLY FFT_PENULTIMATESTAGE .. 67
FFT4_1WEIGHTPERITERATIONB .. 68

Construction of a High-Performance FFT

vi 2.1, August 8, 2004

FFT_PENULTIMATESTAGE .. 69
FFT_FINALSTAGE PROTOTYPE.. 70
FFT_FINALSTAGE ... 70
FFT4_0WEIGHTSSCALE .. 75
FFT8_0WEIGHTSSCALE .. 76
FFT KERNEL WITH SCALING FOR REVERSE TRANSFORM.. 78
MULTIPLE-STAGE KERNEL WITH SCALING FOR REVERSE TRANSFORM... 79
FFT_FIRSTSTAGE WITH SCALING FOR REVERSE TRANSFORM... 79
CONSTANTSSET ... 81
GETCONSTANTS... 82
FFT.. 83
GENERATE BIT-REVERSED BYTES FOR RW.. 87

1 Introduction

1.1 What Is an FFT?
This paper is intended for the engineer who wants to design and implement an FFT or to
understand an existing implementation. It helps if you already know what an FFT is.
However, it is not essential. This paper is about how to compute an FFT, not how to use
it, and the computations are laid out in detail.

FFT stands for Fast Fourier Transform. It is an algorithm for performing a DFT. DFT
stands for Discrete Fourier Transform. The DFT is a mathematical operation. You will
find a definition for it in section 2.1.4. If you are unfamiliar with the DFT, you are proba-
bly a software engineer who has been asked to implement or maintain some FFT code for
some signal processing applications. In that case, you can study the mathematics in this
paper to understand the FFT structure or read any of the numerous books and web pages
about the FFT, what it does, and how it is used.

Strictly, the FFT is a specific algorithm for performing fast DFTs on vectors whose
lengths are powers of two. “FFT” is also used to describe other algorithms for performing
DFTs on vectors of other lengths. This paper addresses only vector lengths that are pow-
ers of two. The basic algorithm used in this paper is described in section 2.3.

1.2 What Are We Going To Do?
This paper shows you how to design and implement a high-performance FFT, particu-
larly on a computer processor with AltiVec technology. High-performance means execut-
ing an FFT not just in O(n log n) time but organizing the work for efficient execution so
that an FFT can be performed in world-class time. The design illustrated in this docu-
ment, if implemented well, can perform an FFT on a 1024-element vector in less than
9,400 CPU cycles on a Motorola PowerPC CPU 7400.

Section 2 analyzes the mathematical structure of the DFT, shows an FFT procedure, and
proves the FFT procedure computes the DFT. The mathematics is developed explicitly.
The advantage of this, aside from knowing our algorithm is correct, is that it makes it eas-
ier for us to reason about the algorithm. The effect is that other decisions later on—How
do we generate the weights?—are easier because we can write a simple formula that
shows what must be calculated. Also, this assists in demonstrating that the FFT algorithm
is largely composed of simple parts, albeit connected in some complicated ways.

Section 3 converts the algorithm into simple C code and then shows how to reorganize
the code for efficient execution. This method of showing how the code is developed is
repeated in this paper for two reasons:

• Showing the development provides a better understanding of the design than
showing a completed work, particularly since some parts of the complete design
are intricate.

Construction of a High-Performance FFT

2 2.1, August 8, 2004

• Laying out the decisions separately makes them easier to change for other circum-
stances, such as a different target architecture.

Section 4 shows incremental design improvements and methods to implement them.

Section 5 discusses generating constants needed by the FFT routines.

Section 6 reorganizes the basic FFT loops for more efficient execution.

Section 7 shows how to design an FFT for efficient performance on long vectors that do
not fit completely in cache memory at one time.

Section 8 adds support for the reverse DFT.

Section 9 completes the FFT, showing code to call the subroutines of earlier sections.

1.3 Target Architecture
The overall design described in this paper is suitable for implementation on a variety of
computer architectures, because features like simplifying code structure, reducing mem-
ory use, and eliminating unneeded calculations are generally beneficial regardless of
computer architecture. At certain points, choices will be made specifically for the family
of PowerPC processors (from IBM and Motorola) using AltiVec technology (from Mo-
torola).

AltiVec technology has several features of interest in implementing a high-performance
FFT.

The floating-point instructions include a fused multiply-add operation that executes in the
same time as a multiply or add operation. It is therefore advantageous to structure calcu-
lations to minimize multiply-add operations rather than merely minimizing multiply op-
erations.

The architecture provides single-instruction multiple-data (SIMD) instructions that per-
form the same calculation on four sets of floating-point numbers at the same time. E.g.,
the calculation expressed by this C code:

for (i = 0; i < 4; ++i)
 d[i] = a[i] * b[i] + c[i];

can be computed by the single instruction “vmaddfp d, a, b, c ”, provided that the ar-
ray contents are in processor registers named a, b, c , and d.

Along with this multiple-data capability come:

• the ability to load and store data to and from memory in blocks and

 Construction of a High-Performance FFT

2.1, August 8, 2004 3

• the restriction that memory access should be done on addresses with 16-byte
alignment for best performance.

These features affect our design decisions by giving us incentive to group data in blocks
of four floating-point numbers.

1.4 Target Processor
In section 7, particular characteristics of the Motorola PowerPC CPU 7400 will be used
to illustrate design choices and construct the FFT. Relevant information about this CPU is
in section 7.1.1.

The reader is expected to be familiar with cache operations, such as touches, streams, in-
validates, and flushes.

1.5 Introductory Notes

1.5.1 Source Code Notation and Mathematical Notatio n
References to C and assembly language source code are marked with a fixed-width font,
as in the assembly-language instruction vmaddfp or the C expression 1<<N- n[p] .

The usual mathematical notation is used extensively in section 2 and sporadically
throughout this paper. At times it is necessary to mix these two notations, to refer to the
mathematical value that a certain software entity has. Italics denote mathematical vari-
ables, such as n, and distinguish them from software entities, such as n.

1.5.2 Complex Number Representation
The representations of complex numbers and arrays of complex numbers are not made
explicit in much of this paper. Many of design features and criteria discussed are not sen-
sitive to the choice of representations.

Common arrangements for arrays of complex numbers are:

• Have two arrays. One holds the real components of the complex numbers, and the
other holds the imaginary components. This is called split or separated data.

• Have one array in which each element is a structure containing two floating-point
numbers, one the real component and the other the imaginary component. This is
called interleaved data.

In demonstration source code, the real or imaginary components of complex numbers are
sometimes referred to in ways that, due to C semantics, suggest a certain representation.
E.g., a reference to “v.re[k] ” implies v is a structure containing a member re (and likely
another member im) that is an array of floating-point numbers, thus suggesting separated
data. Conversely, “v[k].re ” implies an array of structures, thus suggesting interleaved
data. The reader should understand that usually either arrangement is acceptable, with

Construction of a High-Performance FFT

4 2.1, August 8, 2004

suitable changes in the source code, and I may switch back and forth between them to use
the representation that is simpler in whatever feature is being discussed.

In discussing the data being transformed, the term “element” refers to an entire complex
element, either as a whole or as essentially parallel operations on its real and imaginary
components. When the individual components are relevant, the real and imaginary com-
ponents are referred to explicitly.

1.5.3 Miscellaneous
“Low bit” and “low bits” refer to the least significant bits of a value. “High bit” and “high
bits” refer to the most significant bits of a value. The values involved are typically bit
fields smaller than whole processor registers or architectural words, so the most or least
significant bits involved are those of the value and not necessarily of the whole word.

1.5.4 Bit -Reversal Permutation
It is well known that the FFT produces results in a permuted order, an order called a bit-
reversal permutation. This is defined formally in sections 2.1.5 and 2.3. An introduction
here may also be useful. An array a' containing 2N elements is said to be the bit-reversal
permutation of an array a also containing 2N elements if:

 For each k and k' such that the N-bit binary notation for k (including lead-

ing zeroes) is the bit-by-bit reversal of the N-bit binary notation for k',

kk aa ′′= .

That is, each element ak is found in a' by reversing the bits in the index k.

Note two properties of the bit-reversal:

• The bit-reversal of a number is symmetric; the bit-reversal of the bit-reversal is
the original number. The same is true of the entire permutation; the bit-reversal
permutation of a bit-reversal permutation is the identity permutation.

• The bit-reversal depends on N. For example, the bit-reversal of 11 considered as a
4-bit number (10112) is 13 (11012). The bit-reversal of 11 considered as a 6-bit
number (0010112) is 52 (1101002).

2 Mathematical Composition of an FFT

2.1 Definitions

2.1.1 Domains
The domain for variables used as indices is the set of nonnegative integers. This includes
the variables j, j0, j1, k, k0, k1, k2, m, n, N, p, and q. That domain should be understood in
the theorems below. Other variables are drawn from the set of complex numbers or are
explicitly described.

 Construction of a High-Performance FFT

2.1, August 8, 2004 5

The square root of -1 is denoted with i and not with j.

Indices begin at zero. A vector with 2N elements has indices k satisfying Nk 20 <≤ .

2.1.2 Notation
Bold font indicates a vector: a.

A subscript indicates an element of a vector: aj.

Brackets indicate construction of a vector: 40

2][<≤ jj is a vector containing the elements 0,

1, 4, and 9.

If a has, for example, 2m elements, then a is identical to mjja

20
][

<≤
.

2.1.3 Roots of 1
For convenience, we define 1x to be e2 π i x. Note that 1p/q is one of the qth roots of 1. Spe-
cifically, it is the pth such root in the counterclockwise (+i) direction from the real axis.
Thus, 10/4 = 1, 11/4 = i, 12/4 = -1, and 13/4 = -i.

1x is cyclic with period 1, since, if k is an integer, 1k+x=e2 π i (k+x)=e2 π i ke2 π i x=1e2 π i x=1x.

1-x is the complex conjugate of 1x, written x1 .

2.1.4 Discrete Fourier Transform (DFT)
The DFT of a 2N-element vector h is the vector H:

 .20for
20

2 N

j
j

jk

k khH
N

N <≤= ∑
<≤

1

This is identical to the conventional definition that uses
i

jk
N

e
π2

2 for the coefficient rather

than
N

jk

21 .

2.1.5 Bit -Reversal Function, r(k)
Given an integer k, let [bi] be the string of bits (0 or 1) such that ∑=

i

i
ibk 2 . Thus [bi] is

the binary numeral for k. The sum may be taken over all integers i. Only finitely many
bits will be non-zero, so the sum effectively has a finite number of terms although limits
on i are not explicitly written.

Define () ∑ −−=

i

i
ibkr 12 .

A description of r is:

Construction of a High-Performance FFT

6 2.1, August 8, 2004

 r(k) is the number obtained by writing the binary digits of k in reverse or-

der after a “.”. E.g., r(12) = r(11002) = .00112 = 3/16.

The way r maps integers to fractions is convenient in the FFT, particularly since r is in-
dependent of the length of the vector being transformed. We will also multiply r(k) by 2m
to produce an integer result:

Lemma (1): If k<2m, 2mr(k) is the number obtained by writing k as an m-bit number in

binary, including leading 0s, and reversing the digits (that is, exchanging
the i th digit with the m-i-1th digit).

Proof: 2mr(k) is ∑ ∑= −−−−

i i

im
i

i
i

m bb 11 222 . By substituting m-i-1 for i, we obtain

∑ −−
i

i
imb 21 .

Corollary (2): If k < 2m, then 2mr(k) is an integer.

Lemma (3): If k1 < 2m, then r(2mk0 + k1) = r(k1)+r(2mk0).

Proof: Let [b0,i] and [b1,i] be binary numerals for k0 and k1, respectively, and note that
[b0,i-m] is the binary numeral for 2mk0. The binary numeral for 2mk0+k1 is [b0,i-m+b1,i] be-
cause b0,i-m+b1,i is always a binary digit; b0,i-m and b1,i are never both 1. (b1,i is 1 only for
some i less than m, and b0,i-m is 1 only for some i not less than m.) Then:

() ()

() ().2

22

22

10

,1,0

,1,010

krkr

bb

bbkkr

m

i i

i
i

i
mi

i

i
imi

m

+=

+=

+=+

∑ ∑
∑

−

−

Lemma (4): 2mr(2mk) = r(k).

Proof: If [bi] is the binary numeral for k, [bi-m] is the binary numeral for 2mk. Then
2mr(2mk) is ∑ ∑= −−

−
−−

−
i i

im
mi

i
mi

m bb 11 222 . Substituting m+i for i gives ∑ −−

i

i
ib 12 , which is

r(k).

2.2 1x with r(k)

Lemma (5): If k1 < 2m, then () ()01022 krkkr mm

11 =+⋅ .

Proof:

 () () ()0110 22222 krkrkkr mmmmm ⋅+⋅+⋅ = 11 , by Lemma (3).

 ()022 kr mm⋅= 1 , since 1x is cyclic and 2mr(k1) is an integer by Corollary (2).

 Construction of a High-Performance FFT

2.1, August 8, 2004 7

 ()0kr1= , by Lemma (4).

2.3 Introduction to the FFT Procedure
Let v be a sequence of vectors, so that vi is the i th vector in v and vi,k is the kth element in
the i th vector in v. Each vector will be of length 2N, so the element index k satisfies

Nk 20 <≤ .

Let v0 = h, where h is a vector we are interested in computing the DFT of.

We define vn,k for Nn ≤<0 by dividing k by 2N-n and using the quotient k0 and the re-
mainder k1:

Definition: () .

20
2,02,,

1

0

10
∑

<≤
+

⋅
+ −− ==

n

nNnN

j
kj

krj

kknkn vvv 1

The last vector of this sequence, vN, is the bit-reversal permutation of H, the DFT of h, as
H is defined in section 2.1.4. To see this, consider an element kNv , . Following the defini-

tion of vn,k, we divide the element index k by 2N-N to get the quotient k and the remainder
0, which gives:

 ()
() ()

().2
20

2

2

20
,0

2

2

20
0,0, kr

j
j

krj

j
j

krj

j
j

krj
kN N

N

N

N

N

N

N

N

Hhvvv ==== ∑∑∑
<≤

⋅

<≤

⋅

<≤
+

⋅ 111

Thus, vN is H indexed with a bit-reversal function (refer to Lemma (1) about 2Nr(k)).

The last vector, vN, is the result we want, and the intermediate vectors form a route for
getting there. Any vector in the sequence can be computed from any previous vector in
the sequence. To see this, we will show how elements of vn+m can be computed from 2m
elements of vn, for Nmnn ≤+≤≤0 . To do this, we need to take an index k into the
vector and decompose it into three parts, k0, k1, and k2, such that k = 2N-nk0 + 2N-n-mk1 + k2
and nk 20 0 <≤ , mk 20 1 <≤ , and mnNk −−<≤ 20 2 . Given that, we will show below that:

Equation (6): () ,

20 1

1

111

1 ∑
<≤

⋅=
mj

j
jkrj

k ad ω1

where ()02 kr m

1=ω ,
2101 22, kkkmnk mnNnNvd

+++ −−−= , and
2101 22, kjknj mnNnNva

++ −−−= .

Equation (6) is the classic butterfly operation of the FFT:

• A few elements of an already-computed vector vn are extracted to form a vector a,
which has 2m elements.

Construction of a High-Performance FFT

8 2.1, August 8, 2004

• The elements of a are multiplied by certain coefficients1 to form a new vector

mjj
j a

20 11

1][
<≤

ω .

• The DFT of mjj
j a

20 11

1][
<≤

ω is computed to give a new vector d.

• The elements of d become elements in a new vector vn+m.

2m is called the radix of the butterfly.

An advantage of this formulation is that the coefficients and the elements of vn+m and vn
are explicitly identified. Some formulations of the FFT show that the FFT can be per-
formed using butterfly operations in this form but leave out details or include them only
as part of a complete algorithm from which it is difficult to identify individual butterfly
operations.

2.4 Proof of the FFT Procedure
Now we prove the claim. First, write k as 2N-nk0 + 2N-n-mk1 + k2 using the k0, k1, and k2 de-
scribed above. Observe that dividing k by 2N-(n+m) gives a quotient 2mk0+k1 and a remain-
der k2. So by definition, vn+m,k is:

 ()
() .

20
2,0

2

22, 2

10

210
∑

+
−−−−

<≤
+

+⋅
+++

=
mn

mnN

m

mmnN

j
kj

kkrj

kkkmn
vv 1

Divide j by 2m to get a quotient j0 and a remainder j1. Then:

()
() ()

()

() ()
()

() ()
()

() ()
()

() ()
().

20 20
22,0

222

20 20
22,0

222

20 20
22,0

22

20 20
22,0

22

220
22,0

22

22,

1 0

210

100101

1 0

210

100101

1 0

210

1010

1 0

210

1010

10

210

1010

210

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑

<≤ <≤
++

+⋅+⋅

<≤ <≤
++

+⋅+⋅

<≤ <≤
++

+⋅+

<≤ <≤
++

+⋅+

<+≤
++

+⋅+
+++

−−−

−−−

−−−

−−

−−−−

=

=

=

=

=

m n

mnNnN

mmm

m n

mnNnN

mmm

m n

mnNnN

mm

m n

mmnN

mm

nm

mmnN

mm

mmnN

j j
kjj

kkrjkkrj

j j
kjj

kkrjkkrj

j j
kjj

kkrjj

j j
kjj

kkrjj

jj
kjj

kkrjj

kkkmn

v

v

v

v

vv

11

11

1

1

1

So far, we have used standard algebraic derivations. The next step uses properties of r

and 1x. By Lemma (5), () ()01022 krkkr mm

11 =+⋅ . That gives us:

Equation (7): ()
() ()

().
20 20

22,0

2

22,
1 0

210

00101

210
∑ ∑

<≤ <≤
++

⋅+⋅
+++ −−−−− =

m n

mnNnN

m

mmnN

j j
kjj

krjkkrj

kkkmn
vv 11

1 These coefficients are commonly called “twiddles.” I will call them weights.

 Construction of a High-Performance FFT

2.1, August 8, 2004 9

Consider ()210 22, kjkn mnNnNv

++ −−− . To use the definition of vn, divide 2N-nk0 + (2N-n-mj1 + k2) by

2N-n to get quotient k0 and remainder (2N-n-mj1 + k2), and then the definition gives:

 ()

()
()∑

<≤
++

⋅
++ −−−−−− =

n

mnNnNmnNnN

j
kjj

krj

kjkn
vv

20
22,022, 21

0

210
1 .

Change j to j0 in that equation and substitute it into Equation (7) to get:

()

()
().

20
22,

2

22,
1

210

101

210
∑

<≤
++

+⋅
+++ −−−−− =

m

mnNnN

m

mmnN

j
kjkn

kkrj

kkkmn
vv 1

By Lemma (3), r(2mk0 + k1) = r(k1)+r(2mk0), so:

()

() ()

() ()() .
20

22,

2

20
22,

2

22,

1

210

1
011

1

210

0111

210

∑

∑

<≤
++

⋅

<≤
++

⋅⋅
+++

−−−

−−−−−

=

=

m

mnNnN

m

m

mnNnN

m

mmnN

j
kjkn

j
krkrj

j
kjkn

krjkrj

kkkmn

v

vv

11

11

This is readily seen to be equivalent to Equation (6). We have proven that Equation (6)
can be used to compute each vector vn from previous vectors, so a sequence of such com-
putations will compute the DFT of h.

2.5 Conclusions
The key statements from the above sections are:

 v0,k = hk,

() ()()∑
<≤

++
⋅

+++ −−−−−− =
m

mnNnN

m

mnNnN

j
kjkn

j
krkrj

kkkmn
vv

20
22,

2

22,
1

210

1
011

210
11 , and

 ().2, krkN NHv =

This suffices to show the FFT takes O(n log n) time (here n is the number of elements)
and how to implement it simply (by choosing an m, constructing a general butterfly im-
plementation, and iterating through the values of n, k0, and k2). For a high-performance
FFT, it is just our starting point.

Construction of a High-Performance FFT

10 2.1, August 8, 2004

3 Initial Design

3.1 Starting the FFT Kernel

3.1.1 Implement C Code From the Mathematics
The conclusions above show how to implement an FFT that executes in O(n log n) time.
To perform an FFT on a vector of 2N elements, first decide what value of m to use in each
step from some vn to some vn+m. E.g., for a vector of 29 elements, we might use m’s of 3,
2, 2, and 2 to go from v0 to v3 to v5 to v7 to v9. For each of these v’s after v0, calculate:

 () ()()∑
<≤

++
⋅

+++ −−−−−− =
m

mnNnN

m

mnNnN

j
kjkn

j
krkrj

kkkmn
vv

20
22,

2

22,
1

210

1
011

210
11 ,

using the corresponding values of n and m.

To be formal, let m0, m1, m2,…, mP-1 be a sequence of positive integers that sum to N. Let
where n0 = 0 and np+1=np + mp. Then nP=N, and the following set of calculations is suffi-
cient to perform an FFT on a vector of length 2N.

 () ()()
Bj

kjkn

j
krkrj

kkkn
pm

pmpnNpnN
p

pm

pmpnNpnN
p

vv

= ∑
<≤

++
⋅

++ −−−−−−
+

20
22,

2

22,
1

210

1
011

2101

11 ,

where B represents the variables bounds and is: Pp <≤0 , pnk 20 0 <≤ , pmk 20 1 <≤ ,

and pp mnNk −−<≤ 20 2 . Although this expression is tedious, we can translate it directly into
C code:

FFT Directly From Mathematics
for (p = 0; p < P ; ++p)
for (k0 = 0; k0 < 1<<n[p] ; ++k0)
for (k1 = 0; k1 < 1<<m[p] ; ++k1)
for (k2 = 0; k2 < 1<<N - n[p] - m[p]; ++k2)
{
 complex sum = 0.;
 for (j1 = 0; j1 < 1<<m[p]; ++j1)
 sum += one(j1*r(k1)) * one(j1*r((1<<m[p])*k0)) *
 v [n[p]] [(1<<N - n[p])*k0 + (1<<N - n[p] - m[p])*j1 + k2];
 v [n[p+1]] [(1<<N - n[p])*k0 + (1<<N - n[p] - m[p])*k1 + k2] = sum;
}

where one(x) and r(k) are functions to compute 1x and r(k). (The exponentiation by j1
has been written as a multiplication in the exponent of 1.)

3.1.2 Group Butterfly Calculations Together
The C code specifies an execution order, but the mathematical expression is a set of op-
erations. They may be performed in any order, subject to the natural constraint that each

 Construction of a High-Performance FFT

2.1, August 8, 2004 11

element vn,k must be calculated before it is used. We will rearrange the calculations to
benefit computing speed. (In fact, I chose P to stand for “pass,” reflecting that the FFT
can be performed in P separate passes over the data, exactly as in the loops above. We
will not stay with this, although I will sometimes refer to calculations in a certain pass,
such as the first pass, the last pass, or some pass p. These refer to logical positions in the
calculation and not necessarily chronological positions in the execution sequence.)

First, note that for given values of p, k0 , and k2 , the calculations for different values of
k1 use the same elements of v[n[p]] . (k1 does not appear in the subscript to v[n[p]] .)
Because of this, it is efficient to group these calculations together, since that allows all
the inputs to be read once and used repeatedly. Since k1 and k2 are independent of each
other, we may freely swap the order of their loops:

for (p = 0; p < P ; ++p)
for (k0 = 0; k0 < 1<<n[p] ; ++k0)
for (k2 = 0; k2 < 1<<N - n[p] - m[p]; ++k2)
for (k1 = 0; k1 < 1<<m[p] ; ++k1)
...

3.1.3 Create a Butterfly Subroutine
Define a subroutine:

FFT_Butterflies
static void FFT_Butterflies(
 int m, // Butterfly radix.
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int k0, // k0 from equation.
 int c0 // Coefficient for k0.
)
{
 // Coefficient for k1 is coefficient for k0 divided by 1<<m.
 const int c1 = c0 >> m;
 int j1, k1, k2;

 for (k2 = 0; k2 < c1 ; ++k2)
 for (k1 = 0; k1 < 1<<m; ++k1)
 {
 complex sum = 0.;
 for (j1 = 0; j1 < 1<<m; ++j1)
 sum += one(j1*r(k1)) * one(j1*r((1<<m)*k0)) *
 vIn[c0*k0 + c1*j1 + k2];
 vOut[c0*k0 + c1*k1 + k2] = sum;
 }
}

By using this subroutine, our FFT code becomes:

Construction of a High-Performance FFT

12 2.1, August 8, 2004

First FFT Kernel
for (p = 0; p < P ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], k0, 1<<N - n[p]);

We will call this the FFT kernel. It will change and grow as we improve the implementa-
tion.

The code above for FFT_Butterflie s does not show all the inputs vIn[c0*k0 + c1*j1

+ k2] being read prior to the loop on k1 , but that will be a feature of the butterfly rou-
tines we construct later. For now, we will state that feature is added to the
FFT_Butterflies routine without showing it. A second benefit of the feature is that by
reading all input elements before writing any output element, the routine may be used
“in-place,” that is, with the same memory used for vIn and vOut .

3.2 Structuring the FFT

3.2.1 General
We must choose the values of mp. These are largely influenced by our target processor
architecture. To begin, I require that N be at least 4, so that some reductions can be made
later, in section 3.3.5. FFTs for fewer than 16 (4<N) elements can be implemented
separately.

In most passes, a radix-4 butterfly (m is 2) is attractive, as it is efficient and a high-
performance implementation is feasible. A high-performance general radix-8 butterfly is
difficult or impossible to implement (see below). Conversely, a radix-2 butterfly is easy
but inefficient. So for most passes, we will use radix-4 butterflies.

What would be required to implement a general radix-8 butterfly? A general radix-8 but-
terfly has 16 input numbers (real and imaginary components of eight complex numbers),

14 numbers for weights, and one additional constant (2/2). Those numbers occupy 31
processor registers. (The AltiVec registers hold four floating-point numbers each, but we
wish to use the parallelism of the processor and perform four butterflies at once. Each
number needed by one butterfly will occupy one of the four spaces in a register, and the
parallel numbers of other butterflies will occupy others.) The PowerPC CPU 7400, like
all existing AltiVec processors, executes instructions in a pipeline. To obtain high per-
formance, multiple instructions must be executed simultaneously, and so multiple calcu-
lations must be in progress at one time. With 31 registers occupied and 32 total, only one
register is left to work with.

It is possible to start some calculations of the radix-8 butterfly without having all the in-
put data, and it is possible to perform calculations at less than the best possible speed. A
radix-8 butterfly is more efficient than a radix-4 butterfly in that two passes of a radix-8
butterfly yield the same mathematical results as three passes of a radix-4 butterfly but re-
quire the data to be read and written only two times instead of three. It is conceivable that
an FFT structured with radix-8 passes could compete for performance with an FFT struc-

 Construction of a High-Performance FFT

2.1, August 8, 2004 13

tured with radix-4 passes. I have not fully explored this possibility and do not consider it
further in this paper.

3.2.2 First Pass
Although we will use m=2 for most passes, we will consider the first m, m0, separately
because of a significant difference in the butterfly calculations in the initial pass (p is

zero). When p is zero, np is zero. Recall the bounds on k0 are pnk 20 0 <≤ , so, when p is

zero, we have 10 0 <≤ k , so k0 is zero and only zero. Then the weight used, ()02 kr m

1=ω ,

is 1. Since multiplying by 1 is a waste of time, a special butterfly implementation that
omits the multiplications by the weight will be faster than a general implementation that
multiplies by the weight, while still getting correct results in this case.

When the multiplications by the weight are not needed, the number of processor registers
required by an implementation of the butterfly calculations is reduced, since registers are
not needed to hold the values associated with the weight. In this case, high-performance
radix-4, radix-8, and radix-16 butterfly implementations are all feasible. Generally, a
higher-radix butterfly is preferred, for two reasons. One, a good FFT composed of higher-
radix butterflies uses no more, and perhaps fewer, calculations than an FFT composed of
lower-radix butterflies. Two, with higher-radix butterflies, fewer passes are needed, and
so the number of times data must be read from and written to memory (or cache) is lower.

Because we are using butterflies with m=2 (radix-4) for all passes after the first, we need
at least two butterfly implementations for the first pass, one with an even m and one with
an odd m. The m’s must sum to N, which can be even or odd. Thus, we must use the
radix-8 butterfly for odd N, and we may use either the radix-4 or radix-16 butterfly for
even N. The radix-16 butterfly provides a slight performance advantage over the radix-4
butterfly, but the cost of implementing it might not be worth the slight gain. I will use the
radix-4 butterfly in this paper. The changes required to support a radix-16 butterfly in the
initial pass are small. (Among other changes, the minimum value of N will need to be in-
creased from 4 to 5.)

3.2.3 Summary
This then gives us an FFT structure. For even N, use a radix-4 butterfly on the first pass
and all remaining passes. For odd N, use a radix-8 butterfly on the first pass and a radix-4
butterfly on all remaining passes.

3.3 Preparing the Kernel

3.3.1 Separate the First Pass
The FFT kernel is:

for (p = 0; p < P ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], k0, 1<<N - n[p]);

Construction of a High-Performance FFT

14 2.1, August 8, 2004

To use a special butterfly routine for the first pass, we should separate that iteration from
the rest of the loop. That gives:

for (p = 0; p < 1 ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], k0, 1<<N - n[p]);

for (p = 1; p < P ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], k0, 1<<N - n[p]);

Some simplifications are now possible. The first loop (on p) is a single iteration, and so is
the second (on k0) since n[p] is 0. Instances of k0 and n[p] in these loops may be re-
placed with 0. In the second set of loops, m[p] is always 2, so it will be replaced. Then
we have:

p = 0;
FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], 0, 1<<N);

for (p = 1; p < P ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(2, v[n[p+1]], v[n[p]], k0, 1<<N - n[p]);

3.3.2 Eliminate Fictitious Mathematical Vectors
As stated earlier, the butterfly routines can be written to work in place. So we are not re-
quired to have separate memory for v[n[p]] and v[n[p+1]] . Instead, we can pass the
same memory location for the butterfly input and output vectors. Before the butterfly, the
memory will contain elements of

pnv . After the butterfly, the memory will contain ele-

ments of
1+pnv . We will use two arrays, named vIn for the original input array and vOut

for the final output array. On the first pass, data is read from vIn and written to vOut . On
subsequent passes, data is both read from and written to vOut , so all subsequent calcula-
tions are performed in place. Note that vIn may be the same array as vOut or may be dif-
ferent. The new code is:

p = 0;
FFT_Butterflies(m[p], vOut, vIn, 0, 1<<N);

for (p = 1; p < P ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

3.3.3 Specialize Values for the First Pass
We decided to use an initial radix-8 butterfly if N is odd and an initial radix-4 butterfly if
N is even, so the first call to FFT_Butterflies with can be expanded with 3 or 2 substi-
tuted for m[p] :

if (N & 1)
 FFT_Butterflies(3, vOut, vIn, 0, 1<<N);

 Construction of a High-Performance FFT

2.1, August 8, 2004 15

else
 FFT_Butterflies(2, vOut, vIn, 0, 1<<N);

for (p = 1; p < P ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

3.3.4 Discuss the Last Two Passes
The last two passes (when p is P-2 and P-1) are also special, partly for reasons to do with
the target computer architecture. We classify passes after the first:

• general passes (p < P-2), in which there are many (more than four) iterations on
k2 for each iteration on k0 ,

• the penultimate pass (p = P-2), in which there are four iterations on k2 for each it-
eration on k0 , and

• the final pass (p = P-1), in which there is one iteration on k2 for each iteration on
k0 .

The general passes have the feature that one weight is used for many iterations on k2 , be-
cause the weight depends only on k0 and not on k2 . Thus, we will be able to load the val-
ues associated with a weight once each time k0 changes and use them for many values of
k2 .

In the penultimate pass, there are four iterations on k2 per iteration on k0 . With AltiVec
instructions, one iteration of the butterfly instruction sequence will calculate butterflies
for four values of k2 . Thus, the weight used will change in each iteration of the instruc-
tion sequence. In this case, it is better to use code designed to reload the weight values
frequently.

In the final pass, there is one iteration on k2 per iteration on k0 . k2 is always zero, and the
coefficient c1 in the FFT_Butterflies routine is 1. This means the input elements for
one butterfly are adjacent to each other in the array, as can be seen by examining the sub-
scripts in the butterfly code. AltiVec instructions are not well suited to data packed so
closely together, so a special routine is necessary. To complicate matters further, we will
want to do additional processing in the final pass.

3.3.5 Separate the Last Two Passes
The details of designing specialized routines to calculate butterflies in the last two passes
will be examined in sections 4.3.4 and 4.3.5. For now, we want to prepare the kernel by
separating those passes:

if (N & 1)
 FFT_Butterflies(3, vOut, vIn, 0, 1<<N);
else
 FFT_Butterflies(2, vOut, vIn, 0, 1<<N);

for (p = 1; p < P - 2 ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)

Construction of a High-Performance FFT

16 2.1, August 8, 2004

 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

for (; p < P - 1 ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

for (; p < P ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

As before, some simplifications become available. The values of 1<<N- n[p] are known
constants in the final two sets of loops, where p is P-2 and P-1. np=N, np-1+mp-1=np, and
mp-1=2, so np-1=N-2. Similarly, np-2=N-4. Thus 1<<N- n[p] is 16 and 4 in the final two sets
of loops. The values of n[p] are not constants but are known to be N-4 and N-2 . Making
these substitutions gives:

for (; p < P - 1 ; ++p)
for (k0 = 0; k0 < 1<<N - 4; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 16);

for (; p < P ; ++p)
for (k0 = 0; k0 < 1<<N - 2; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 4);

The loop “for (; p < P; ++p) ” can become “if (p < P) ” because there is at most
one iteration (since p is at least P-1 after the previous set of loops). This discards one
execution of “++p”, but there is no subsequent code that uses p, so the increment is super-
fluous. Further, if we require that P be at least 2, the condition is necessarily true, so the
test may be omitted. Requiring P be 2 implies we have at least m0 and m1, each of which
will be at least 2, so N is at least 4. Our kernel now works only for vectors of at least 16
elements. (If a radix-16 butterfly is used in the first pass in lieu of a radix-4 butterfly, the
radix-8 butterfly becomes the smaller possibility in the first pass. Then m0 is at least 3, so
N is at least 5, and there must be at least 32 elements.)

The kernel is now:

if (N & 1)
 FFT_Butterflies(3, vOut, vIn, 0, 1<<N);
else
 FFT_Butterflies(2, vOut, vIn, 0, 1<<N);

for (p = 1; p < P - 2 ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

for (; p < P - 1 ; ++p)
for (k0 = 0; k0 < 1<<N - 4; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 16);

for (k0 = 0; k0 < 1<<N - 2; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 4);

 Construction of a High-Performance FFT

2.1, August 8, 2004 17

As we saw in the last set of loops, the “for (; p < P - 1; ++p) ” in the penultimate set
can be changed to “if (p < P - 1) ”, and the ++p is again superfluous and may be dis-
carded:

Expanded FFT Kernel
if (N & 1)
 FFT_Butterflies(3, vOut, vIn, 0, 1<<N);
else
 FFT_Butterflies(2, vOut, vIn, 0, 1<<N);

for (p = 1; p < P - 2 ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

if (p < P - 1)
for (k0 = 0; k0 < 1<<N - 4; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 16);

for (k0 = 0; k0 < 1<<N - 2; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 4);

3.3.6 Use Butterfly Specializations
Now that the special cases have been separated in the kernel, we take advantage of them
by using specializations of the butterfly routine customized for high performance in each
case.

The initial radix-8 and radix-4 butterflies will be performed by routines that are essen-
tially FFT_Butterflies specialized to m=2 or m=3 and k0=0. These are named
FFT8_0Weights (described in section 4.3.3) and FFT4_0Weights (described in section
4.3.2).

The general radix-4 butterflies will be performed by a routine specialized to m=2 and
vIn =vOut . Rather than require this routine to calculate one(j1*r((1<<m)*k0)) , we will
pass it precalculated values to use. As discussed in section 3.3.4, only one weight is used
per value of k0 , so only one weight is passed. This routine is named
FFT4_1WeightPerCall (described in section 4.3.1). In section 4.2, I discuss what the
contents of the weights array should be.

In the penultimate pass, the loop on k2 in FFT_Butterflies is executed only four times
in C code, only once when implemented as AltiVec instructions. At the same time,
FFT_Butterflies is called many times, since the upper bound on k0 is larger than in
previous passes. To reduce the overhead of routine calls, we use a routine that incorpo-
rates the loop on k0 . In addition, the routine will be designed to efficiently load the
weights, one per instruction sequence iteration. This routine is named
FFT4_1WeightPerIteration (described in section 4.3.4). Instead of being passed a sin-
gle value of k0 , it is passed the upper bound on k0 , and, instead of being passed a single
weight, it is passed the array of weights.

Construction of a High-Performance FFT

18 2.1, August 8, 2004

The final pass similarly incorporates the loop on k0 in its butterfly routine. This routine is
named FFT4_Final (described in section 4.3.5). Using these new routines, our kernel be-
comes:

FFT Kernel Using Specialized Butterfly Routines
if (N & 1)
 FFT8_0Weights(vOut, vIn, 1<<N);
else
 FFT4_0Weights(vOut, vIn, 1<<N);

for (p = 1; p < P - 2 ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]);

if (p < P - 1)
 FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);

FFT4_Final(vOut, 1<<N - 2, weights);

4 Designing Butterfly Routines
The bulk of a high-performance FFT implementation is the butterfly routines. The
FFT_Butterflies subroutine given in section 3.1.3 is quite general and does not provide
high performance. We must implement the routines described in section 3.3.6.

These routines incorporate improvements including:

• Read each input element before writing any output to the same memory location,
so the routine can be used “in-place.”

• Load weights from a table instead of calculating them.
• Compute butterflies of specific radices with specialized code.
• Incorporate a loop iterating on k0 .
• Omit multiplications by a weight when the weight is 1.
• Incorporate other desired processing, including rearranging data in memory.

As mentioned, a butterfly routine can read of its input elements before writing any output
element. This is a straightforward modification and will not be demonstrated for the gen-
eral butterfly routine. It will be a feature of all of the specific high-performance variations
we write.

4.1 Prepared Constants

4.1.1 Internal Weights Are Built into Routine
The FFT_Butterflies routine contains two expressions that refer to one and r . The first
of these is one(j1*r(k1)) . This depends solely on j1 and k1 , each of which is between
0 and m. Thus, the expression one(j1*r(k1)) takes on a fixed set of values that is de-
termined by m. When writing a butterfly variation for a specific value of m, those values
can be incorporated into the routine.

 Construction of a High-Performance FFT

2.1, August 8, 2004 19

For example, in a radix-4 butterfly (m is 2), one(j1*r(k1)) takes on the values 1, -1, i,
and -i at various times. Rather than compute one(j1*r(k1)) , the routine simply multi-
plies by 1, -1, i, or -i at the appropriate points.

In a radix-8 butterfly, we also see the values 2/22/2 i±± . With the constant 2/2
prepared at the time the source code is compiled or assembled, no calculation is needed at
run-time for the values of one(j1*r(k1)) .

4.1.2 External Weights Are Stored in An Array
The second expression is one(j1*r((1<<m)*k0)) . The values of this expression depend
on k0 , so they differ from iteration to iteration in a loop on k0 . Still, we wish to avoid
computing them when the FFT is performed. A simple arrangement is to calculate all the

values ()() 1
02

j
kr m

1 takes on and store them in an array, say an array named weights . The

value of ()() 1
02

j
kr m

1 could be in weights[k0][j1] .

However, we will see in section 4.2 that these values are not all used directly in a high-
performance implementation of a radix-4 butterfly. Instead, for each value of k0, we use

six floating-point numbers derived from the values ()() 1
02

j
kr m

1 for 0<j1<4. These six val-
ues will be stored in some structure in the array element weights[k0] .

Calculating the values and storing them in an array saves no computation time when per-
forming a single FFT. There is a savings when numerous FFTs on vectors of the same
length are performed, as these weight calculations need be performed only once, prior to
performing the first FFT. Reading the values from memory will usually be much faster
than calculating them. Hence there is a great advantage to storing the values.

Note that the value of m is assumed in weights . A specific preparation of the array
weights provides values only for butterflies of a specific radix. To provide values for
multiple radices, multiple arrays or more-complicated arrangements would be needed.

4.1.3 Common Weights
The elements of weights are independent of the length of the vector being transformed.
The number of elements we need from the array depends on the length of the vector (k0
reaches higher values for longer vectors), but the contents of each element are the same.
For example, every FFT for which k0 reaches the value 7 uses the same value in
weights[7][1] . Thus, one array of weights (for a specific radix) arranged in this way
may be easily shared by FFTs of every length.

4.2 General Radix -4 Butterfly Alg orithm

4.2.1 Goedecker’s Algorithm
The general radix-4 butterfly, with an input vector a, an output vector d, and some weight
ω, is Equation (6) with m=2:

Construction of a High-Performance FFT

20 2.1, August 8, 2004

 ()∑

<≤

⋅=
40 1

1

111

1
j

j
jkrj

k ad ω1 .

Implementations of this calculation that minimize the number of multiplications have
been known for some time, but the AltiVec architecture, like many others, features a
fused multiply-add operation. Using this operation, S. Goedecker gives us a 22-
instruction sequence for calculating the radix-4 butterfly.2 Goedecker’s algorithm re-
quires that we prepare the weights in a different form. In place of the six real and imagi-
nary components of ω 1, ω2, and ω3, we use six values calculated from them:

 w1r = Re(ω).
 w1i = Im(ω)/Re(ω).
 w2r = Re(ω2).
 w2i = Im(ω2)/Re(ω2).
 w3r = Re(ω3)/Re(ω).
 w3i = Im(ω3)/Re(ω3).

When we wish to perform a radix-4 butterfly, we retrieve those six prepared values and
read the four complex numbers of a into processor registers named a0r , a0i , a1r , a1i ,
a2r , a2i , a3r , and a3i , whose names indicate the real and imaginary components of the
elements of a in the natural way. Then Goedecker’s algorithm is:

Goedecker’s Algorithm
b1r = - a1i * w1i + a1r.
b1i = + a1r * w1i + a1i.
b2r = - a2i * w2i + a2r.
b2i = + a2r * w2i + a2i.
b3r = - a3i * w3i + a3r.
b3i = + a3r * w3i + a3i.
c0r = + b2r * w2r + a0r.
c0i = + b2i * w2r + a0i.
c2r = - b2r * w2r + a0r.
c2i = - b2i * w2r + a0i .
c1r = + b3r * w3r + b1r.
c1i = + b3i * w3r + b1i.
c3r = - b3r * w3r + b1r.
c3i = - b3i * w3r + b1i.
d0r = + c1r * w1r + c0r.
d0i = + c1i * w1r + c0i.
d1r = - c1r * w1r + c0r.
d1i = - c1i * w1r + c0i.
d2r = - c3i * w1r + c2r.
d2i = + c3r * w1r + c2i.
d3r = + c3i * w1r + c2r.
d3i = - c3r * w1r + c2i.

2 S. Goedecker, “Fast Radix 2, 3, 4, and 5 Kernels for Fast Fourier Transformations on Computers with Overlapping
Multiply-Add Instructions,” SIAM Journal of Scientific Computing 18, no. 6 (November 1997): 1605-1611,
http://epubs.siam.org/sam - bin/dbq/article/28194 .

 Construction of a High-Performance FFT

2.1, August 8, 2004 21

Upon completion of this sequence, d0r , d0i , d1r , d1i , d2r , d2i , d3r , and d3i contain
the real and imaginary components of d, as may be verified by working through the alge-
bra. Note that each of the 22 lines corresponds to one AltiVec vmaddfp or vnmsubfp in-
struction. (Except those instructions operate on four sets of data, where I have shown
only one.)

4.2.2 Division by Zero
The astute reader will have wondered what happens when Re(ω), Re(ω2), or Re(ω3) is
zero. The short answer is to never let them be zero. In practice, this turns out to be sim-
ple, an unintended side effect of finite floating-point precision. Re(ω) is zero when ω is i

(or -i). ω is ()02 kr m

1 , so it is i when r(2mk0) is ¼. Then 1¼ is, by definition, e2 π i ¼, which is
eπ/2 i. When preparing the weights, the real part of this is calculated by evaluating
cos(π/2), which is ideally zero. However, a computer’s floating-point representation of
π/2 is imperfect, and a small-nonzero value results. This avoids division by zero, but it in-
troduces a small error into the FFT calculation. However, this error is no different from
the many errors caused by rounding errors in all the other weights, which are also calcu-
lated imprecisely. The FFT calculation is necessarily slightly imprecise.

4.3 Butterfly Routines

4.3.1 FFT4_1WeightPerCall
FFT4_1WeightPerCall implements FFT_Butterflies with m=2 and vIn =VOut and with
weight values provided so that it need not calculate them.

If we make the first two modifications (replacing m with 2 and vIn with vOut) directly to
FFT_Butterflies and change the arguments, we get:

static void FFT4_1WeightPerCall(
 ComplexArray vOut, // Address of output vector.
 int k0, // k0 from equation.
 int c0, // Coefficient for k0.
 CommonWeight weight // Values for weight calculations.
)
{
 // Coefficient for k1 is coefficient for k0 divided by 1<<m.
 const int c1 = c0 >> 2;
 int j1, k1, k2;

 for (k2 = 0; k2 < c1; ++k2)
 for (k1 = 0; k1 < 4 ; ++k1)
 {
 complex sum = 0.;
 for (j1 = 0; j1 < 4; ++j1)
 sum += one(j1*r(k1)) * one(j1*r(4*k0)) *
 vOut[c0*k0 + c1*j1 + k2];
 vOut[c0*k0 + c1*k1 + k2] = sum;
 }
}

Construction of a High-Performance FFT

22 2.1, August 8, 2004

Now we will implement Goedecker’s algorithm. Essentially, the loops on k1 and j1 are
replaced by Goedecker’s algorithm from section 4.2.1, including the necessary reads of
input elements into symbols a0r , a0i , a1r , a1i , a2r , a2i , a3r , and a3i and writes of
output from symbols d0r , d0i , d1r , d1i , d2r , d2i , d3r , and d3i . If weight is set cor-
rectly, the code above and the code below calculate the same results (aside from differ-
ences in floating-point rounding).

FFT4_1WeightPerCall
static void FFT4_1WeightPerCall(
 ComplexArray vOut, // Address of output vector.
 int k0, // k0 from equation.
 int c0, // Coefficient for k0.
 CommonWeight weight // Values for weight calculations.
)
{
 // Coefficient for k1 is coefficient for k0 divided by 1<<m.
 const int c1 = c0 >> 2;
 int k2;
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,
 b1r, b1i, b2r, b2i, b3r, b3i,
 c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,
 d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;

 for (k2 = 0; k2 < c1; ++k2)
 {
 a0r = vOut.re[c0*k0 + c1*0 + k2];
 a0i = vOut.im[c0*k0 + c1*0 + k2];
 a1r = vOut.re[c0*k0 + c1*1 + k2];
 a1i = vOut.im[c0*k0 + c1*1 + k2];
 a2r = vOut.re[c0*k0 + c1*2 + k2];
 a2i = vOut.im[c0*k0 + c1*2 + k2];
 a3r = vOut.re[c0*k0 + c1*3 + k2];
 a3i = vOut.im[c0*k0 + c1*3 + k2];
 b1r = - a1i * weight.w1i + a1r;
 b1i = + a1r * weight.w1i + a1i;
 b2r = - a2i * weight.w2i + a2r;
 b2i = + a2r * weight.w2i + a2i;
 b3r = - a3i * weight.w3i + a3r;
 b3i = + a3r * weight.w3i + a3i;
 c0r = + b2r * weight.w2r + a0r;
 c0i = + b2i * weight.w2r + a0i;
 c2r = - b2r * weight.w2r + a0r;
 c2i = - b2i * weight.w2r + a0i;
 c1r = + b3r * weight.w3r + b1r;
 c1i = + b3i * weight.w3r + b1i;
 c3r = - b3r * weight.w3r + b1r;
 c3i = - b3i * weight.w3r + b1i;
 d0r = + c1r * weight.w1r + c0r;
 d0i = + c1i * weight.w1r + c0i;
 d1r = - c1r * weight.w1r + c0r;
 d1i = - c1i * weight.w1r + c0i;
 d2r = - c3i * weight.w1r + c2r;
 d2i = + c3r * weight.w1r + c2i;
 d3r = + c3i * weight.w1r + c2r;

 Construction of a High-Performance FFT

2.1, August 8, 2004 23

 d3i = - c3r * weight.w1r + c2i;
 vOut.re[c0*k0 + c1*0 + k2] = d0r;
 vOut.im[c0*k0 + c1*0 + k2] = d0i;
 vOut.re[c0*k0 + c1*1 + k2] = d1r;
 vOut.im[c0*k0 + c1*1 + k2] = d1i;
 vOut.re[c0*k0 + c1*2 + k2] = d2r;
 vOut.im[c0*k0 + c1*2 + k2] = d2i;
 vOut.re[c0*k0 + c1*3 + k2] = d3r;
 vOut.im[c0*k0 + c1*3 + k2] = d3i;
 }
}

4.3.2 FFT4_0Weights
FFT4_0Weights implements FFT_Butterflies with m=2 and k0=0. The calculations for
a weightless radix-4 butterfly are straightforward and can be derived from
FFT4_1WeightPerCall by replacing w1r , w2r , and w3r with 1 and w1i , w2i , and w3i
with 0 and simplifying the resulting code:

FFT4_0Weights
static void FFT4_0Weights(
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int c0 // Coefficient for k0.
)
{
 // Coefficient for k1 is coefficient for k0 divided by 1<<m.
 const int c1 = c0 >> 2;
 int k2;
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,
 c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,
 d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;

 for (k2 = 0; k2 < c1; ++k2)
 {
 a0r = vIn.re[c1*0 + k2];
 a0i = vIn.im[c1*0 + k2];
 a1r = vIn.re[c1*1 + k2];
 a1i = vIn.im[c1*1 + k2];
 a2r = vIn.re[c1*2 + k2];
 a2i = vIn.im[c1*2 + k2];
 a3r = vIn.re[c1*3 + k2];
 a3i = vIn.im[c1*3 + k2];
 c0r = + a2r + a0r;
 c0i = + a2i + a0i;
 c2r = - a2r + a0r;
 c2i = - a2i + a0i;
 c1r = + a3r + a1r;
 c1i = + a3i + a1i;
 c3r = - a3r + a1r;
 c3i = - a3i + a1i;
 d0r = + c1r + c0r;
 d0i = + c1i + c0i;
 d1r = - c1r + c0r;
 d1i = - c1i + c0i;
 d2r = - c3i + c2r;

Construction of a High-Performance FFT

24 2.1, August 8, 2004

 d2i = + c3r + c2i;
 d3r = + c3i + c2r;
 d3i = - c3r + c2i;
 vOut.re[c1*0 + k2] = d0r;
 vOut.im[c1*0 + k2] = d0i;
 vOut.re[c1*1 + k2] = d1r ;
 vOut.im[c1*1 + k2] = d1i;
 vOut.re[c1*2 + k2] = d2r;
 vOut.im[c1*2 + k2] = d2i;
 vOut.re[c1*3 + k2] = d3r;
 vOut.im[c1*3 + k2] = d3i;
 }
}

4.3.3 FFT8_0Weights
FFT8_0Weights implements FFT_Butterflies with m=3 and k0=0. It may be said that
the calculations for a weightless radix-8 butterfly are both complicated and straightfor-
ward, as they are very symmetric yet intricate:

FFT8_0Weights
static void FFT8_0Weights(
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int c0 // Coefficient for k0.
)
{
 // Prepare a constant, sqrt(2)/2.
 const float sqrt2d2 = .7071067811865475244;
 // Coefficient for k1 is coefficient for k0 divided by 1<<m.
 const int c1 = c0 >> 3;
 int k2;
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,
 a4r, a4i, a5r, a5i, a6r, a6i, a7r, a7i,
 b0r, b0i, b1r, b1i, b2r, b2i, b3r, b3i,
 b4r, b4i, b5r, b5i, b6r, b6i, b7r, b7i,
 c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,
 c4r, c4i, c5r, c5i, c6r, c6i, c7r, c7i,
 d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i,
 d4r, d4i, d5r, d5i, d6r, d6i, d7r, d7i,
 t5r, t5i, t7r, t7i;

 for (k2 = 0; k2 < c1; ++k2)
 {
 a0r = vIn.re[c1*0 + k2];
 a0i = vIn.im[c1*0 + k2];
 a1r = vIn.re[c1*1 + k2];
 a1i = vIn.im[c1*1 + k2];
 a2r = vIn.re[c1*2 + k2];
 a2i = vIn.im[c1*2 + k2];
 a3r = vIn.re[c1*3 + k2];
 a3i = vIn.im[c1*3 + k2];
 a4r = vIn.re[c1*4 + k2];
 a4i = vIn.im[c1*4 + k2];
 a5r = vIn.re[c1*5 + k2];
 a5i = vIn.im[c1*5 + k2];

 Construction of a High-Performance FFT

2.1, August 8, 2004 25

 a6r = vIn.re[c1*6 + k2];
 a6i = vIn.im[c1*6 + k2];
 a7r = vIn.re[c1*7 + k2];
 a7i = vIn.im[c1*7 + k2];
 b0r = a0r + a4r; // w = 1.
 b0i = a0i + a4i;
 b1r = a1r + a5r;
 b1i = a1i + a5i;
 b2r = a2r + a6r;
 b2i = a2i + a6i;
 b3r = a3r + a7r;
 b3i = a3i + a7i;
 b4r = a0r - a4r;
 b4i = a0i - a4i;
 b5r = a1r - a5r;
 b5i = a1i - a5i;
 b6r = a2r - a6r;
 b6i = a2i - a6i;
 b7r = a3r - a7r;
 b7i = a3i - a7i;
 c0r = b0r + b2r; // w = 1.
 c0i = b0i + b2i;
 c1r = b1r + b3r;
 c1i = b1i + b3i;
 c2r = b0r - b2r;
 c2i = b0i - b2i;
 c3r = b1r - b3r;
 c3i = b1i - b3i;
 c4r = b4r - b6i; // w = i.
 c4i = b4i + b6r;
 c5r = b5r - b7i;
 c5i = b5i + b7r;
 c6r = b4r + b6i;
 c6i = b4i - b6r;
 c7r = b5r + b7i;
 c7i = b5i - b7r;
 t5r = c5r - c5i;
 t5i = c5r + c5i;
 t7r = c7r + c7i;
 t7i = c7r - c7i;
 d0r = c0r + c1r; // w = 1.
 d0i = c0i + c1i;
 d1r = c0r - c1r;
 d1i = c0i - c1i;
 d2r = c2r - c3i; // w = i.
 d2i = c2i + c3r;
 d3r = c2r + c3i;
 d3i = c2i - c3r;
 d4r = + t5r * sqrt2d2 + c4r; // w = sqrt(2)/2 * (+1+i).
 d4i = + t5i * sqrt2d2 + c4i;
 d5r = - t5r * sqrt2d2 + c4r;
 d5i = - t5i * sqrt2d2 + c4i;
 d6r = - t7r * sqrt2d2 + c6r; // w = sqrt(2)/2 * (- 1+i).
 d6i = + t7i * sqrt2d2 + c6i;
 d7r = + t7r * sqrt2d2 + c6r;
 d7i = - t7i * sqrt2d2 + c6i;
 vOut.re[c1*0 + k2] = d0r;

Construction of a High-Performance FFT

26 2.1, August 8, 2004

 vOut.im[c1*0 + k2] = d0i ;
 vOut.re[c1*1 + k2] = d1r;
 vOut.im[c1*1 + k2] = d1i;
 vOut.re[c1*2 + k2] = d2r;
 vOut.im[c1*2 + k2] = d2i;
 vOut.re[c1*3 + k2] = d3r;
 vOut.im[c1*3 + k2] = d3i;
 vOut.re[c1*4 + k2] = d4r;
 vOut.im[c1*4 + k2] = d4i;
 vOut.re[c1*5 + k2] = d5r;
 vOut.im[c1*5 + k2] = d5i;
 vOut.re[c1*6 + k2] = d6r;
 vOut.im[c1*6 + k2] = d6i;
 vOut.re[c1*7 + k2] = d7r;
 vOut.im[c1*7 + k2] = d7i;
 }
}

For readers who wish to analyze the radix-8 butterfly code, it is structured as a sequence
of three radix-2 passes. The comments show the value of ω where each iteration on k0
begins.

Discussion of the derivation of the above code is beyond the scope of this paper. Maple
code that generates the assignment statements is given in appendix A.

4.3.4 FFT4_1WeightPerIteration
FFT_1WeightPerIteration implements a loop on k0 calling FFT_Butterflies with
m=2, vIn =Vout , and c1 =4 and with an array of weight values provided so that it need not
calculate them. FFT_1WeightPerIteration compute the same results as:

for (k0 = 0; k0 < 1<<N - 4; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 16);

Here is a simple implementation:

static void FFT4_1WeightPerIteration(
 ComplexArray vOut, // Address of output vector.
 int u0, // Upper bound on k0.
 const CommonWeight weights[] // Array of weight values.
)
{
 int j1, k0, k1, k2;

 for (k0 = 0; k0 < u0; ++k0)
 for (k2 = 0; k2 < 4 ; ++k2)
 for (k1 = 0; k1 < 4 ; ++k1)
 {
 complex sum = 0.;
 for (j1 = 0; j1 < 4; ++j1)
 sum += one(j1*r(k1)) * one(j1*r(4*k0)) *
 vOut[16*k0 + 4*j1 + k2];
 vOut[16*k0 + 4*k1 + k2] = sum;

 Construction of a High-Performance FFT

2.1, August 8, 2004 27

 }
}

Here is an implementation using Goedecker’s algorithm:

FFT4_1WeightPerIteration
static void FFT4_1WeightPerIteration(
 ComplexArray vOut, // Address of output vector.
 int u0, // Upper bound on k0.
 const CommonWeight weights[] // Array of weight values.
)
{
 int k0, k2;
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,
 b1r, b1i, b2r, b2i, b3r, b3i,
 c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,
 d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;

 for (k0 = 0; k0 < u0; ++k0)
 {
 // Load values for current weight.
 CommonWeight weight = weights[k0];

 for (k2 = 0; k2 < 4 ; ++k2)
 {
 a0r = vOut.re[16*k0 + 4*0 + k2];
 a0i = vOut.im[16*k0 + 4*0 + k2];
 a1r = vOut.re[16*k0 + 4*1 + k2];
 a1i = vOut.im[16*k0 + 4*1 + k2];
 a2r = vOut.re[16*k0 + 4*2 + k2];
 a2i = vOut.im[16*k0 + 4*2 + k2];
 a3r = vOut.re[16*k0 + 4*3 + k2];
 a3i = vOut.im[16*k0 + 4*3 + k2];
 b1r = - a1i * weight.w1i + a1r;
 b1i = + a1r * weight.w1i + a1i;
 b2r = - a2i * weight.w2i + a2r;
 b2i = + a2r * weight.w2i + a2i;
 b3r = - a3i * weight.w3i + a3r;
 b3i = + a3r * weight.w3i + a3i;
 c0r = + b2r * weight.w2r + a0r;
 c0i = + b2i * weight.w2r + a0i;
 c2r = - b2r * weight.w2r + a0r;
 c2i = - b2i * weight.w2r + a0i;
 c1r = + b3r * weight.w3r + b1r;
 c1i = + b3i * weight.w3r + b1i;
 c3r = - b3r * weight.w3r + b1r;
 c3i = - b3i * weight.w3r + b1i;
 d0r = + c1r * weight.w1r + c0r;
 d0i = + c1i * weight.w1r + c0i;
 d1r = - c1r * weight.w1r + c0r;
 d1i = - c1i * weight.w1r + c0i;
 d2r = - c3i * weight.w1r + c2r;
 d2i = + c3r * weight.w1r + c2i;
 d3r = + c3i * weight.w1r + c2r;
 d3i = - c3r * weight.w1r + c2i;
 vOut.re[16*k0 + 4*0 + k2] = d0r;

Construction of a High-Performance FFT

28 2.1, August 8, 2004

 vOut.im[16*k0 + 4*0 + k2] = d0i;
 vOut.re[16*k0 + 4*1 + k2] = d1r;
 vOut.im[16*k0 + 4*1 + k2] = d1i;
 vOut.re[16*k0 + 4*2 + k2] = d2r;
 vOut.im[16*k0 + 4*2 + k2] = d2i;
 vOut.re[16*k0 + 4*3 + k2] = d3r;
 vOut.im[16*k0 + 4*3 + k2] = d3i;
 }
 }
}

Note that when this is implemented with AltiVec instructions, the loop on k2 will vanish,
as all four iterations of the loop are performed by a single iteration of AltiVec instruc-
tions, as indicated by the name FFT4_1WeightPerIteration .

4.3.5 FFT4_Final
FFT_1Final implements a loop on k0 calling FFT_Butterflies with m=2, vIn =Vout ,
and c1=1 and with an array of weight values provided so that it need not calculate them.
FFT_Final should compute the same results as:

for (k0 = 0; k0 < 1<<N - 2; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 4);

Here is a simple implementation:

static void FFT4_Final(
 ComplexArray vOut, // Address of output vector.
 int u0, // Upper bound on k0.
 const CommonWeight weights[] // Array of weight values.
)
{
 int j1, k0, k1, k2;

 for (k0 = 0; k0 < u0; ++k0)
 for (k2 = 0; k2 < 1 ; ++k2)
 for (k1 = 0; k1 < 4 ; ++k1)
 {
 complex sum = 0.;
 for (j1 = 0; j1 < 4; ++j1)
 sum += one(j1*r(k1)) * one(j1*r(4*k0)) *
 vOut[4*k0 + j1 + k2];
 vOut[4*k0 + k1 + k2] = sum;
 }
}

We can reduce this further since k2 is always zero:

static void FFT4_Final(
 ComplexArray vOut, // Address of output vector.
 int u0, // Upper bound on k0.
 const CommonWeight weights[] // Array of weight values.
)

 Construction of a High-Performance FFT

2.1, August 8, 2004 29

{
 int j1, k0, k1;

 for (k0 = 0; k0 < u0; ++k0)
 for (k1 = 0; k1 < 4 ; ++k1)
 {
 complex sum = 0.;
 for (j1 = 0; j1 < 4; ++j1)
 sum += one(j1*r(k1)) * one(j1*r(4*k0)) *
 vOut[4*k0 + j1];
 vOut[4*k0 + k1] = sum;
 }
}

Here is an implementation using Goedecker’s algorithm:

FFT4_Final
static void FFT4_Final(
 ComplexArray vOut, / / Address of output vector.
 int u0, // Upper bound on k0.
 const CommonWeight weights[] // Array of weight values.
)
{
 int k0;
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,
 b1r, b1i, b2r, b2i, b3r, b3i,
 c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,
 d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;

 for (k0 = 0; k0 < u0; ++k0)
 {
 // Load values for current weight.
 CommonWeight weight = weights[k0];

 a0r = vOut.re[4*k0 + 0];
 a0i = vOut.im[4*k0 + 0];
 a1r = vOut.re[4*k0 + 1];
 a1i = vOut.im[4*k0 + 1];
 a2r = vOut.re[4*k0 + 2];
 a2i = vOut.im[4*k0 + 2];
 a3r = vOut.re[4*k0 + 3];
 a3i = vOut.im[4*k0 + 3];
 b1r = - a1i * weight.w1i + a1r;
 b1i = + a1r * weight.w1i + a1i;
 b2r = - a2i * weight.w2i + a2r;
 b2i = + a2r * weight.w2i + a2i;
 b3r = - a3i * weight.w3i + a3r;
 b3i = + a3r * weight.w3i + a3i;
 c0r = + b2r * weight.w2r + a0r;
 c0i = + b2i * weight.w2r + a0i;
 c2r = - b2r * weight.w2r + a0r;
 c2i = - b2i * weight.w2r + a0i;
 c1r = + b3r * weight.w3r + b1r;
 c1i = + b3i * weight.w3r + b1i;
 c3r = - b3r * weight.w3r + b1r;
 c3i = - b3i * weight.w3r + b1i;

Construction of a High-Performance FFT

30 2.1, August 8, 2004

 d0r = + c1r * weight.w1r + c0r;
 d0i = + c1i * weight.w1r + c0i;
 d1r = - c1r * weight.w1r + c0r;
 d1i = - c1i * weight.w1r + c0i;
 d2r = - c3i * weight.w1r + c2r;
 d2i = + c3r * weight.w1r + c2i;
 d3r = + c3i * weight.w1r + c2r;
 d3i = - c3r * weight.w1r + c2i;
 vOut.re[4*k0 + 0] = d0r;
 vOut.im[4*k0 + 0] = d0i;
 vOut.re[4*k0 + 1] = d1r;
 vOut.im[4*k0 + 1] = d1i;
 vOut.re[4*k0 + 2] = d2r;
 vOut.im[4*k0 + 2] = d2i;
 vOut.re[4*k0 + 3] = d3r;
 vOut.im[4*k0 + 3] = d3i;
 }
}

4.3.5.1 AltiVec Implementation
Readers familiar with the AltiVec architecture will appreciate that previous butterfly rou-
tines are nearly ideal for AltiVec implementation. FFT4_Final presents some interesting
problems, though. Consider the symbols a0r , a1r , a2i , and a3i . The values for these
symbols are read from array elements with indices 4*k0+0 , 4*k0+1 , 4*k0+2 , and 4*k0+3 .
These elements are adjacent to each other, and AltiVec instructions provide no good way
to perform arithmetic on adjacent elements. Additional instructions must be used to move
the elements around within the processor registers.

This problem interacts fortuitously with another problem. The FFT finishes with its ele-
ments permuted from the desired order. That is, the FFT procedure returns vN, which is
the bit-reversal permutation of H. After vN is computed, we would like to rearrange the
array elements into the desired order. This rearrangement also requires moving elements
within processor registers. As it happens, quite to our benefit, the same rearrangements
serve both to provide the desired order and to arrange the elements conveniently for high-
performance calculation.

However, this rearrangement changes the order in which we process elements, with con-
sequences to the weight array. We could use the same weight array as is used in other
routines, but the calculations of the memory addresses of the weights will be more com-
plicated, and we will need to rearrange the weights within the processor registers to
match the data. The FFT can be performed faster if the weights are prearranged as
needed.

This is discussed further in section 6.4.

5 Generating Weights
The butterfly routines need prepared weights. Here is code to generate them.

 Construction of a High-Performance FFT

2.1, August 8, 2004 31

5.1 Prerequisites
A simple constant is used:

TwoPi
static const double TwoPi = 2 * 3.14159265358979323 84626433;

The values needed to perform a butterfly with one weight can be stored in this structure:

CommonWeight
typedef struct {
 float w1r, w1i, w2r, w2i, w3r, w3i;
} CommonWeight;

5.2 Subroutines
The weight-generation routines need some subroutines. Here is a subroutine to calculate
the integer base-two logarithm of n, that is n2log :

ilog2
static inline int ilog2(unsigned int n)
{
 int c;
 for (c = 0; n >>= 1; ++c)
 ;
 return c;
}

With GCC and a PowerPC execution target, the same function may be implemented more
efficiently with the routine below. Many processors have an instruction similar to
cntlzw , which counts the number of leading zero bits in a word (of 32 bits).

static inline int ilog2(unsigned int n)
{
 int c;
 asm(" cntlzw %0, %1; subfic %0, %0, 31 " : " =r " (c) : "r" (n));
 return c;
}

A method is needed to calculate bit-reversals. The following routine calculates the bit-
reversal of a 32-bit number by reversing the bit-reversals of its four eight-bit bytes, which
are looked up in a table. The table is generated with the code in section B.4.

rw, Reverse Word
static unsigned int rw(unsigned int k)
{
 static const unsigned char b[256] = {
 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,
 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248,
 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244,
 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252,
 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242,
 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250,

Construction of a High-Performance FFT

32 2.1, August 8, 2004

 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246,
 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254,
 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241,
 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249,
 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245,
 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253,
 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243,
 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251,
 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,
 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255

 };
 unsigned char
 b0 = b[k >> 0*8 & 0xff],
 b1 = b[k >> 1*8 & 0xff],
 b2 = b[k >> 2*8 & 0xff],
 b3 = b[k >> 3*8 & 0xff];
 return b0 << 3*8 | b1 << 2*8 | b2 << 1*8 | b3 << 0* 8;
}

The function r(k), which rotates bits around a “.”, can be computed from rw(k) , which
reverses bits in a 32-bit field, by shifting the bits right 32 bits in floating-point:

r, Calculate r(k)
static float r(unsigned int k)
{
 return 1./4294967296. * rw(k);
}

5.3 Generate Common Weights
The routine below generates the array of common weights.

The numbers stored in each array element are the numbers needed for Goedecker’s algo-

rithm, described in section 4.2.1. In each iteration the weight is ()02 kr m

1=ω , from
Equation (6) in section 2.3. Since we use m=2, we have ()04kr1=ω . Thus r(4*k0) is used
in the code below to generate the numbers.

The caller of this routine passes the length of the vector to be transformed. This is the
number of elements in the vector to be transformed, not the number of elements in the
weight array.

This routine generates only 2N/16 weights. In full, 2N/4 weights are needed, as the upper
limit on k0 in the final pass is 2N/4, as readily seen in the call to FFT4_Final in section
3.3.6. Indeed, the loop condition below should be “k0 < n/4 ” to support the kernel as
written so far. However, in section 6.4, we will modify FFT4_Final in ways that preclude
it from using the common weights. It will get its own weights array, and the common ar-
ray generated here will be used only by the other butterfly routines. In this case, the
greatest upper limit on k0 is 2N/16, as seen in the call to FFT4_1WeightPerIteration in
section 3.3.6.

Here is the routine. See comments below about the arguments.

 Construction of a High-Performance FFT

2.1, August 8, 2004 33

GenerateCommonWeights
static int GenerateCommonWeights(
 CommonWeight **weights, // Pointer to array address.
 int *length, // Pointer to supported length.
 int NewLength // New length to support (1<<N).
)
{
 int k0;

 // Try to allocate space and check result.
 CommonWeight *p = (CommonWeight *)
 realloc(*weights, NewLength/16 * sizeof **weights);
 if (p == NULL)
 return 1;

 for (k0 = *length/16; k0 < NewLength/16; ++k0)
 {
 const double x = TwoPi * r(4*k0);
 p[k0].w1r = cos(x);
 p[k0].w1i = tan(x);
 p[k0].w2r = cos(x+x);
 p[k0].w2i = tan(x+x);
 p[k0].w3r = 2. * p[k0].w2r – 1.;
 p[k0].w3i = tan(3.*x);
 }

 // Pass address and supported length back to caller .
 *weights = p;
 *length = NewLength;

 return 0;
}

This routine could simply take a vector length as input and return an array of weight val-
ues. However, to facilitate operations by the caller, it provides services to alter an exist-
ing array and to record the supported length. In addition to the vector length to be sup-
ported, the routine is passed two pointers. The first gives the location where an existing
weight array is stored, which may be NULL. The second gives the location where the
length associated with the existing array is stored.

This routine then uses realloc to get the space it needs. This will newly allocate (if the
pointer is NULL) or reallocate memory. The routine then fills in elements that were not in
the previous array (if any). It may be used to shorten an array but is more commonly used
to create an array or lengthen an existing array.

6 More Kernel Changes
The code described in previous sections will provide a high-performance FFT, but we can
still do better.

Construction of a High-Performance FFT

34 2.1, August 8, 2004

6.1 Group Butterflies by Weight
In our latest FFT kernel (section 3.3.6), the second set of loops performs general butter-
flies with one weight per call:

for (p = 1; p < P - 2 ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]);

Implicit in this call is that the contents of weights[k0] are read from memory into regis-
ters. There is one such read for every iteration on k0 , and iterations on k0 are repeated in
subsequent iterations on p. We can eliminate some of the reads by iterating on k0 first
and then on p, that is, by swapping the order of the loops.

6.1.1 Calculate New Loop Bounds
The inner body of the two loops is executed a number of times, each time with a pair of
values for p and k0 . Consider the set of all such pairs. The current code executes the body
with each of those pairs, in a certain order.

Our goal is to execute the body with the same set of pairs, but in a different order. To do
rearrange the loops and get the same pairs, we must calculate new bounds on the variable
used in each loop. Since the upper bound on k0 depends on p, this requires some mathe-
matics.

The existing code shows us trivially that the set of pairs (p, k0) for which the body is exe-

cuted contains those pairs satisfying 21 −<≤ Pp and pnk 20 0 <≤ .

np increases strictly as p increases, so p<P-2 and pnk 20 < imply p is at most P-3 and

therefore 320
−< Pnk . So we can say 320 0

−<≤ Pnk , and that gives us bounds for an outer

loop on k0 . Next we consider the bounds for an inner loop p. Those bounds must depend
on the value of k0 .

It can be shown that the loop bounds for p are () () 22/4log,1max 002 −<≤−+ Ppmk .

However, it is simpler to keep the lower bound for p in an auxiliary variable pLower and

increase pLower whenever the constraint pnk 20 < is violated:

pLower = 1;
for (k0 = 0; k0 < 1<<n[P - 3]; ++k0)
{
 if (! (k0 < 1<<n[pLower]))
 ++pLower;
 for (p = pLower; p < P - 2; ++p)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]);
}

 Construction of a High-Performance FFT

2.1, August 8, 2004 35

Observe that the initial values for pLower and k0 satisfy pnk 20 < , because 120 n< , and a

single increment to pLower when the constraint is violated suffices to restore it because
k0 never increases by more than one per iteration.

6.1.2 Check the New Calculation Order
We have reordered the calculations and should ensure that we have not violated the nec-
essary order. The problem may be phrased in the following way. Consider an element in
vOut with index k. When p is 0, this element will be read once, used in calculations, and
then written once. This will occur again when p is 1, 2, 3, and so on. These uses of the
element must occur in that order, so that when it is read for p=p, it contains the result cal-
culated when p=p-1. How do we know the new loop order satisfies this?

The element with index k is read once and written once per value of p, specifically when

k0 has the value pnNk −2/ . As p increases, the values of k0 form a non-decreasing se-

quence. Then we can easily see that sorting the pairs of values (p, k0) lexicographically
first by p and then by k0 (the original loop order, iterating on p and then k0) yields the
same order as sorting the pairs first by k0 and then by p (the new loop order). Thus al-
though the references to different array elements have been reordered, the references to
any one array element k are in the same correct order as they were originally.

6.1.3 Optimize the Code
A few calculations can be saved by creating an auxiliary loop to handle the increments to
pLower . The code above evaluates “k0 < 1<<n[pLower] ” and “k0 < 1<<n[P - 3] ” in
each iteration on k0 . As long as pLower < P -2 , the former implies the latter, so, each
time k0 changes, we need test only the former. When it fails, then we will increment
pLower , and we must test the latter. Observe that “k0 < 1<<n[pLower] ” fails just as we
have incremented k0 to the value 1<<n[pLower] . If “ pLower < P - 2”, then “k0 <

1<<n[P - 3] ”, and vice-versa, so we can use “pLower < P -2 ” as our test:

for (pLower = 1, k0 = 0; pLower < P - 2 ; ++pLower)
for (; k0 < 1<<n[pLower]; ++k 0)
for (p = pLower ; p < P - 2 ; ++p)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]);

To summarize, the new loops above execute all the same calls to FFT4_1WeightPerCall
as the original code (repeated below for reference) but in a different and more efficient
order.

for (p = 1; p < P - 2 ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]);

6.2 Separate the Weightless Butte rflies
We used special butterfly routines for the first pass because there is a significant gain
from eliminating multiplications when weights are not needed. Now that we have rear-

Construction of a High-Performance FFT

36 2.1, August 8, 2004

ranged the second set of loops in the kernel, we have again grouped together a set of but-
terflies in which k0 is zero. We again separate these from the rest:

pLower = 1;
for (p = pLower; p < P - 2 ; ++p)
 FFT4_0Weights(vOut, vOut, 1<<N - n[p]);

for (k0 = 1 ; pLower < P - 2 ; ++pLower)
for (; k0 < 1<<n[pLower]; ++k0)
for (p = pLower; p < P - 2 ; ++p)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]);

The first loop is always executed and is no longer guarded by the loop tests “pLower <

P-2 ” or “k0 < 1<<n[pLower] ”. However, the former is implied by “p < P -2 ”, which is
evaluated, and the latter is true because k0 is implicitly 0, so this separation of the first
loop is safe.

6.2.1 Create A Variant of FFT4_0Weights
FFT4_0Weights has both an input array and an output array as arguments. We only need
one array in this instance and could use another specialization of the routine. The per-
formance gain is likely to be slight or zero, as the address calculations for the second ar-
ray might be computed entirely in parallel with the floating-point data calculations.

However, there may be a more important reason for using a separate variant of this rou-
tine. The initial pass is an opportune place to perform additional processing, such as rear-
ranging the data in memory so that it is arranged in a way that is efficient for the remain-
ing routines. In such a case, you will need a variant of FFT4_0Weights that does the addi-
tional processing and another variant that does not do the additional processing.

6.3 Update the Kernel
Our FFT kernel now is:

if (N & 1)
 FFT8_0Weights(vOut, vIn, 1<<N);
else
 FFT4_0Weights(vOut, vIn, 1<<N);

pLower = 1;
for (p = pLower; p < P - 2 ; ++p)
 FFT4_0Weights(vOut, vOut, 1<<N - n[p]);

for (k0 = 1 ; pLower < P - 2 ; ++pLower)
for (; k0 < 1<<n[pLower]; ++k0)
for (p = pLower; p < P - 2 ; ++p)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]);

if (p < P - 1)
 FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);

FFT4_Final(vOut, 1<<N - 2, weights);

 Construction of a High-Performance FFT

2.1, August 8, 2004 37

This code refers to n[p] , representing np. We do not actually need an array to hold values
of np; we can calculate them. There is a 1-1 map between p and np, and the operations we
use on them are isomorphic under the map. (Notably, inequalities involving p are iso-
morphic because np is a strictly increasing function of p.) So every reference to p may be
replaced by an equivalent reference to np.

We will replace all references to p, pLower , and n[p] by equivalent expressions of new
variables n and nLower . n will contain the value previously expressed by n[p] , and
nLower will contain the value previously expressed by n[pLower] . The substitutions to
make are:

• pLower = 1 becomes nLower = N&1 ? 3 : 2 .
• p = pLower becomes n = nLower .
• p < P -2 becomes n < N -4 .
• ++p becomes n += 2 .
• ++pLower becomes nLower += 2 .
• n[p] becomes n.
• n[pLower] becomes nLower .

The new code is:

FFT Kernel with Reordered Loops and Separated Loop for k0=0
if (N & 1)
 FFT8_0Weights(vOut, vIn, 1<<N);
else
 FFT4_0Weights(vOut, vIn, 1<<N);

nLower = N&1 ? 3 : 2;
for (n = nLower; n < N - 4 ; n += 2)
 FFT4_0Weights(vOut, vOut, 1<<N - n);

for (k0 = 1 ; nLower < N - 4 ; nLower += 2)
for (; k0 < 1<<nLower; ++k0)
for (n = nLower; n < N - 4 ; n += 2)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);

if (n < N - 2)
 FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);

FFT4_Final(vOut, 1<<N - 2, weights);

With all references to p gone, the entire FFT structure is now built into the kernel. We
could have made these substitutions earlier, but the reasoning in section 6.1.1 depends on
p being an integer and would be harder to express in terms of n. Also, these substitutions
specialize the kernel for a particular scheme of n’s. By developing the kernel to this point
before making the substitutions, it could instead be specialized to other schemes.

Construction of a High-Performance FFT

38 2.1, August 8, 2004

6.4 Incorporate Bit -Reversal Permut ation
The result of the FFT, vN, is the bit-reversal permutation of the desired result, H. (This is
demonstrated in section 2.3). As mentioned in section 4.3.5.1, the final pass is an oppor-
tune place to rearrange the results in memory to produce H instead of vN. Here is one
scheme for doing so.

6.4.1 Read Groups of Elements and Write in Bit -Reversed Locations
To do one butterfly, FFT4_Final reads and writes four elements with indices 4k0+k1 for
the four values of k1, 0, 1, 2, and 3. In the final pass, 4/0 0 Nk <≤ (as seen by the fact

that FFT4_Final is called with 1<<N-2 as the upper bound on k0). Essentially, k0 has N-2
bits in the final pass. Separate k0 into its highest two bits, kH, and its remaining N-4 low
bits, kL, so k0=2N-4kH+kL.

Let Hk′ be the bit-reversal of the two bits of kH. Let Lk′ be the bit-reversal of the N-4 bits

of kL. Let 1k′ be the bit-reversal of the two bits of k1. Observe that the bit-reversal of the

N-bit number 4(2N-4kH+kL)+k1 is () HL1
424 kkkN ′+′+′− .

FFT4_Final iterates through all values of k0, performing one butterfly on four elements
in each iteration. Instead, iterate through values of kL, performing four butterflies on 16
elements in each iteration.

Specifically, in each iteration, read the 16 elements with indices 4(2N-4kH+kL)+k1. Perform
four butterflies on these elements, with the appropriate four weights. Write the results to
the 16 array elements with indices () HL1

424 kkkN ′+′+′− . That is, write the result with in-

dex 4(2N-4kH+kL)+k1 in vN to the bit-reversed index () HL1
424 kkkN ′+′+′− , which is its de-

sired location in H.

When the iterations are completed, the output array will contain results in the order de-
sired, matching H rather than vN.

6.4.2 Problems
Attempting to do this in-place will destroy the array, because Lk′ will in many iterations
be a value that kL has not yet reached. Then data needed in the future is overwritten. An
easy solution is to use a separate array for output in the final pass, if memory is available.
Another solution is to read the 16 old elements just before we overwrite them with new
results. Doing that presents another problem: What do we do with the 16 elements just
read? It also presents an opportunity: Make use of them. First, it will help to define some
terminology.

6.4.3 Terminology
Let the term “kL-elements” refer to the 16 elements that are indexed by using kL and the
16 combinations of values of kH and k1. That is, the kL-elements are those whose indices
in the array are:

 Construction of a High-Performance FFT

2.1, August 8, 2004 39

 (){ }4040|24 H11LH
4 <≤∧<≤++− kkkkkN .

Such an index is essentially the bit-wise concatenation of kH, kL, and k1.

Let the term “kL-reversed-elements” refer to the 16 elements that are indexed by using the
bit-reversal of kL and the 16 combinations of the bit-reversals of the values of kH and k1.
That is, the kL-reversed-elements are those whose indices in the array are:

 (){ }4040|24 H1HL1

4 <≤∧<≤′+′+′− kkkkkN .

Similarly, one of these indices is the bit-wise concatenation of 1k′ , Lk′ , and Hk′ .

Observe that the kL-reversed-elements are also the Lk′ -elements. That is:

 (){ }4040|24 H1HL1

4 <≤∧<≤′+′+′− kkkkkN =

(){ }4040|24 H1HL1
4 <≤∧<≤+′+− kkkkkN .

This is a subtle statement, for the sets look very similar, so it is unsurprising that they are
equal. It embodies the fact that the set of values {0, 1, 2, 3} for k1 equals the set of bit-
reversed values {0, 2, 1, 3} for Hk′ and vice-versa. It is important because it means that
the 16 old kL-reversed-elements we read just before overwriting them are precisely the

Lk′ -elements we can use for new butterfly operations.

6.4.4 Solution
We are ready to redesign FFT4_Final to perform butterflies and permute the results effi-
ciently. After processing some kL-elements, we will read Lk′ -elements and process those.
When those are done, they are stored in the kL-elements. At that point, the kL-elements
were already done, so we are free to go on to a new value of kL.

If we write FFT4_Final with a loop whose body performs four butterflies on 16 ele-
ments, there are three cases to distinguish in each iteration:

• LL kk ′= . The kL-elements are the Lk′ -elements, so there is no need to read the Lk′ -
elements and perform more butterflies. We just go on to a new value of kL.

• LL kk ′≠ and we have just done the kL-elements. We must read the Lk′ -elements
for the next iteration.

• LL kk ′≠ and we have just done the Lk′ -elements. We must go on to a new value of
kL.

Going on to a new value of kL is a problem, as we must skip elements that were already
processed when Lk′ indexed those elements in prior iterations.

Construction of a High-Performance FFT

40 2.1, August 8, 2004

Fortunately, the three cases can all be implemented in simple code that uses a table to de-
termine which location to read next and which location to write next. Using a table both
eliminates the computation of bit-reversals during the FFT execution and eliminates test-
ing and branching to handle separate cases.

We will prepare a table that contains values of kL in the order we would like to process
them and the corresponding values of Lk′ . Like the weights, this table can be prepared be-
fore the first FFT is executed.

Consider this pseudo-code:

q = 0;
Read k L- elements using k L = IndexTable[q].read;
Perform butterflies on input to get output.
for (q = 1; q < 1<<N - 4; ++q)
{
 Read k L- elements using k L = IndexTable[q].read;
 Write k L- reversed - elements using k L’ = IndexTable[q - 1].write;
 Perform butterflies on input to get output.
}
Write k L- reversed - elements using k L’ = IndexTable[q - 1].write;

As discussed, this code reads data, performs butterflies, and then reads the next set of in-
put before writing output. It reads the next set of input in each iteration. This is necessary
in the second of the three cases above. It is unnecessary in the other cases but causes no
harm.

In section 6.4.6, I demonstrate C code that is nearly identical to the pseudo-code:

q = 0;
ReadElements(IndexTable[q].read);
PerformButterflies(weights[q]);
for (q = 1; q < cH; ++q)
{
 ReadElements(IndexTable[q].read);
 WriteReversedElements(IndexTable[q - 1].write);
 PerformButterflies(weights[q]);
}
WriteReversedElements(IndexTable[q - 1].write);

What should be stored in the index table? We have two requirements:

• Each value of kL such that LL kk ′= is stored as a single table entry, with the same
value in the read and write members.

• Each value of kL such that LL kk ′≠ must be stored as a pair of entries. In one en-

try, read contains kL and write contains Lk′ . In the other, read contains Lk′ and
write contains kL. The order of these two entries does not matter.

 Construction of a High-Performance FFT

2.1, August 8, 2004 41

Other than this, the table entries may be ordered as desired. Changing the order within
these constraints will not alter the results that are computed, but it might change perform-
ance, as we will see in section 7.4.

6.4.5 Index Table Implementation
This routine generates a table of indices for the final pass. For definitions of the routines
rw and ilog2 , see section 5.2. See comments in section 5.3 about the arguments.

FinalIndices
typedef struct {
 unsigned short int read, write;
} FinalIndices;

GenerateFinalIndices
static int GenerateFinalIndices(
 FinalIndices **indices, // Pointer to index array address.
 int NewLength // New length to support (1<<N).)
{
 // Prepare to bit - reverse a number of N - 4 bits (see below).
 const int shift = 32 – (ilog2(NewLength) – 4);
 int kL;

 // Try to allocate space and check result.
 FinalIndices *p = (FinalIndices *)
 realloc(*indices, NewLength/16 * sizeof **indices);
 if (p == NULL)
 return 1;

 // Pass address back to caller.
 *indices = p;

 // Iterate through all values of kL.
 for (kL = 0; kL < NewLength/16; ++kL)
 {
 // rw(kL) reverses kL as a 32 - bit number. To get it as
 // the reversal of an N - 4 bit number, shift right to
 // remove 32 - (N - 4) bits.
 const int kLprime = rw(kL) >> shift;

 // If kLprime < kL, then kL in a previous iteration had the
 // value kLprime has now, and we do not want to rep eat it.
 if (kL <= kLprime)
 {
 // If kL == kLprime, add one table entry.
 // If kL != kLprime, add table entries in both orde rs.
 *(p++) = Construct(kL, kLprime);
 if (kL < kLprime)
 *(p++) = Construct(kLprime, kL);
 }
 }
 return 0;
}

Construction of a High-Performance FFT

42 2.1, August 8, 2004

The routine Construct used in the above code is used to construct a FinalIndices ob-
ject. It is unneeded in C 1999 (ISO/IEC 9899-1999) but is needed by older compilers:

Construct
static FinalIndices Construct(unsigned int read, unsigned int write)
{
 FinalIndices result = { read, write };
 return result;
}

Using short int for the indices has some advantage in an AltiVec implementation, but
it limits the vector length that the FFT can operate on. A short int is commonly 16 bits.
Limiting kL to 16 bits limits the entire index to 20 bits, so only vectors of up to
220=1,048,576 elements can be supported.

6.4.6 C Implementation
The C code fragment in section 6.4.4 will become the body of our new FFT4_Final rou-
tine.

6.4.6.1 FFT4_Final
Here is the new FFT4_Final routine. The weights required by this routine are described
in section 6.4.8, and I add some code that will be explained below:

FFT4_Final With Bit -Reversal Permutation
static void FFT4_Final(
 ComplexArray vOut, // Address of output vector.
 int u0, // Upper bound on k0.
 const FinalIndices IndexTable[], // Array of index pairs.
 const FinalWeights weights[] // Array of weight values.
)
{
 typedef float FloatBlock[4];
 FloatBlock a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,
 b1r, b1i, b2r, b2i, b3r, b3i,
 c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,
 d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;
 int q = 0;

 ReadElements(IndexTable[q].read);
 PerformButterflies(weights[q]);
 for (q = 1; q < u0 >> 2; ++q)
 {
 ReadElements(IndexTable[q].read);
 WriteReversedElements(IndexTable[q - 1].write);
 PerformButterflies(weights[q]);
 }
 WriteReversedElements(IndexTable[q - 1].write);
}

The various declarations above (such as a0r) are present even though they appear to be
unused because I will use macros to show the operations in the routine, and the macros

 Construction of a High-Performance FFT

2.1, August 8, 2004 43

will use the declared identifiers. The macros expand to code in the context of the routine
and have access to all of its identifiers. This is usually poor style for code to be used in
actual programs, but it serves well here to illustrate the algorithm.

Note that q is iterated from zero to u0>>2 . In the original version of FFT4_Final , in sec-
tion 4.3.5, u0 iterations were performed. In this new version, four butterflies are per-
formed in each version, and so only u0>>2 iterations are needed.

6.4.6.2 ReadElements
ReadElements , below, reads the kL-elements. Previous radix-4 butterfly routines oper-
ated on four elements at a time, kept in objects of type float . We now do four butterflies
on 16 elements (four sets of four) so we will keep them in objects of type “float [4] ”
and use array indices to access the elements within those objects.

We should study the array indices carefully. In the original version of FFT4_Final , in
section 4.3.5, the index had the form “4*k0 + k1 ”. In this version, we have separated k0
into kH and kL . We defined kH and kL so that k0=2N-4kH+kL, so 4k0+k1 becomes
2N-2kH+4kL+k1. 2

N-2 is passed to FFT4_Final in the parameter u0 (see section 6.3). Thus,
we may use the form “u0*kH + 4*kL + k1 ”. For example, when kH is 2 and k1 is 1, the
array index is “u0*2 + 4*kL + 1 ”.

Observe that the real (or imaginary) components of the four elements associated with one
value of kH and four values of k1 are placed by ReadEl ements one apiece into a0r , a1r ,
a2r , and a3r , in order and ready for butterfly calculations. However, the components as-
sociated with four values of kH (0, 1, 2, and 3) and one value of k1 are placed four apiece
into one of the objects (a0r , a1r , a2r , or a3r) in bit-reversed order (0, 2, 1, and 3).

This does not affect the butterfly calculations (as long as the correct weight is used in
each position). Each of the four butterflies operates on one element from a0r , one from
a1r , one from a2r , and one from a3r , and the contents of other elements do not affect the
butterfly. The advantage of putting the elements in this order is that they are then in the
order in which they must be written to memory. That makes the write operations simpler.

ReadElements
#define ReadElements(kL) \
{ \
 a0r[0] = vOut.re[u0*0 + 4*kL + 0]; \
 a1r[0] = vOut.re[u0*0 + 4*kL + 1]; \
 a2r[0] = vOut.re[u0*0 + 4*kL + 2]; \
 a3r[0] = vOut.re[u0*0 + 4*kL + 3]; \
 a0r[1] = vOut.re[u0*2 + 4*kL + 0]; \
 a1r[1] = vOut.re[u0*2 + 4*kL + 1]; \
 a2r[1] = vOut.re[u0*2 + 4*kL + 2]; \
 a3r[1] = vOut.re[u0*2 + 4*kL + 3]; \
 a0r[2] = vOut.re[u0*1 + 4*kL + 0]; \
 a1r[2] = vOut.re[u0*1 + 4*kL + 1]; \
 a2r[2] = vOut.re[u0*1 + 4*kL + 2]; \
 a3r[2] = vOut.re[u0*1 + 4*kL + 3]; \

Construction of a High-Performance FFT

44 2.1, August 8, 2004

 a0r[3] = vOut.re[u0*3 + 4*kL + 0]; \
 a1r[3] = vOut.re[u0*3 + 4*kL + 1]; \
 a2r[3] = vOut.re[u0*3 + 4*kL + 2]; \
 a3r[3] = vOut.re[u0*3 + 4*kL + 3] ; \
 a0i[0] = vOut.im[u0*0 + 4*kL + 0]; \
 a1i[0] = vOut.im[u0*0 + 4*kL + 1]; \
 a2i[0] = vOut.im[u0*0 + 4*kL + 2]; \
 a3i[0] = vOut.im[u0*0 + 4*kL + 3]; \
 a0i[1] = vOut.im[u0*2 + 4*kL + 0]; \
 a1i[1] = vOut.im[u0*2 + 4*kL + 1]; \
 a2i[1] = vOut.im[u0*2 + 4*kL + 2]; \
 a3i[1] = vOut.im[u0*2 + 4*kL + 3]; \
 a0i[2] = vOut.im[u0*1 + 4*kL + 0]; \
 a1i[2] = vOut.im[u0*1 + 4*kL + 1]; \
 a2i[2] = vOut.im[u0*1 + 4*kL + 2]; \
 a3i[2] = vOut.im[u0*1 + 4*kL + 3]; \
 a0i[3] = vOut.im[u0*3 + 4*kL + 0]; \
 a1i[3] = vOut.im[u0*3 + 4*kL + 1]; \
 a2i[3] = vOut.im[u0*3 + 4*kL + 2]; \
 a3i[3] = vOut.im[u0*3 + 4*kL + 3]; \
}

6.4.6.3 WriteReversedElements
WriteReversedElements writes the Lk′ -reversed-elements. Because the elements in each
array are in the desired order, each array can be written to memory with a simple loop.
Note that kH was bit-reversed to Hk′ by rearranging the elements in ReadElements , and kL

was bit-reversed to Lk′ by reading it from a table, but k1 has not been bit-reversed yet.
That is done here, by using 0, 2, 1, and 3 in the highest bits of the element indices:

WriteReversedElements
#define WriteReversedElements(kLprime) \
{ \
 int kHprime; \
 for (kHprime = 0; kHprime < 4; ++kHprime) \
 { \
 vOut.re[u0*0 + 4*kLprime + kHprime] = d0r[kHprime]; \
 vOut.re[u0*2 + 4*kLprime + kHprime] = d1r[kHprime]; \
 vOut.re[u0*1 + 4*kLprime + kHprime] = d2r[kHprime]; \
 vOut.re[u0*3 + 4*kLprime + kHprime] = d3r[kHprime]; \
 vOut.im[u0*0 + 4*kLprime + kHprime] = d0i[kHprime]; \
 vOut.im[u0*2 + 4*kLprime + kHprime] = d1i[kHprime]; \
 vOut.im[u0*1 + 4*kLprime + kHprime] = d2i[kHprime]; \
 vOut.im[u0*3 + 4*kLprime + kHprime] = d3i[kHprime]; \
 } \
}

6.4.6.4 PerformButterflies
Finally, PerformButterflies does the calculations:

PerformButterflies
#define PerformButterflies(weight) \
{ \

 Construction of a High-Performance FFT

2.1, August 8, 2004 45

 int i; \
 for (i = 0; i < 4; ++i) \
 { \
 b1r[i] = - a1i[i] * weight.w1i[i] + a1r[i]; \
 b1i[i] = + a1r[i] * weight.w1i[i] + a1i[i]; \
 b2r[i] = - a2i[i] * weight.w2i[i] + a2r[i]; \
 b2i[i] = + a2r[i] * weight.w2i[i] + a2i[i]; \
 b3r[i] = - a3i[i] * weight.w3i[i] + a3r[i]; \
 b3i[i] = + a3r[i] * weight.w3i[i] + a3i[i]; \
 c0r[i] = + b2r[i] * weight.w2r[i] + a0r[i]; \
 c0i[i] = + b2i[i] * weight.w2r[i] + a0i[i]; \
 c2r[i] = - b2r[i] * weight.w2r[i] + a0r[i]; \
 c2i[i] = - b2i[i] * weight.w2r[i] + a0i[i]; \
 c1r[i] = + b3r[i] * weight.w3r[i] + b1r[i]; \
 c1i[i] = + b3i[i] * weight.w3r[i] + b1i[i]; \
 c3r[i] = - b3r[i] * weight.w3r[i] + b1r[i]; \
 c3i[i] = - b3i[i] * weight.w3r[i] + b1i[i]; \
 d0r[i] = + c1r[i] * weight.w1r[i] + c0r[i]; \
 d0i[i] = + c1i[i] * weight.w1r[i] + c0i[i]; \
 d1r[i] = - c1r[i] * weight.w1r[i] + c0r[i]; \
 d1i[i] = - c1i[i] * weight.w1r[i] + c0i[i]; \
 d2r[i] = - c3i[i] * weight.w1r[i] + c2r[i]; \
 d2i[i] = + c3r[i] * weight.w1r[i] + c2i[i]; \
 d3r[i] = + c3i[i] * weight.w1r[i] + c2r[i]; \
 d3i[i] = - c3r[i] * weight.w1r[i] + c2i[i]; \
 } \
}

6.4.7 AltiVec Implementation
The C code in section 6.4.6 converts very nicely to AltiVec instructions. The
WriteReversedElements and PerformButterflies macros are straightforward, but
ReadElements requires some work. ReadEl ements permutes the elements as it reads
them, which is often a miserable task in AltiVec work. Fortunately, the permutations we
need work well.

6.4.7.1 ReadElements, Part I
Before permuting the elements, they must be read from memory. ReadEl ements is shown
with array index expressions that imply a good deal of address arithmetic. These calcula-
tions can be simplified:

• Values of 0, 1, 2, and 3 for kH correspond to certain addresses in the data array,
four addresses for the real components and four for the imaginary components.
Calculate these addresses once per FFT and store them in registers named
highbits00r , highbits01r , highbits10r , highbits11r , highbits00i ,
highbits01i , highbits10i , and highbits11i .

• When a value for kL is assigned, calculate the byte offset of 4*k L elements (that
is, the number of bytes from an element with some index k to the element with
index k + 4*kL) . Store this offset in a register named index .

Construction of a High-Performance FFT

46 2.1, August 8, 2004

With these preparations, the AltiVec instruction “lvx y1r, highbits01r, index ”
loads four real components into the register y1r . Those four components are
vOut.re[u0*1+4*kL+0] , vOut.re[u0*1+4*kL+1] , vOut.re[u0*1+4*kL+2] , and
vOut.re[u0*1+4*kL+3] . (See section 6.4.6.2 regarding the use of u0 as the coefficient
for kH, which has the value 1 in this example.) Address arithmetic is thus simple, and the
instructions needed to load all 16 complex elements are:

AltiVec ReadElements, Part I
lvx y0r, highbits00r, index
lvx y1r, highbits01r, index
lvx y2r, highbits10r, index
lvx y3r, highbits11r, index
lvx y0i, highbits00i, index
lvx y1i, highbits01i, index
lvx y2i, highbits10i, index
lvx y3i, highbits11i, index

6.4.7.2 ReadElements, Part II
Next we need to rearrange the elements within the registers, into the bit-reversed order.
Here are instructions for the real components:

AltiVec ReadElements, Part II
vmrghw z0r, y0r, y1r # Merge lesser of two highest bits.
vmrglw z1r, y0r, y1r
vmrghw z2r, y2r, y3r
vmrglw z3r, y2r, y3r
vmrghw a0r, z0r, z2r # Merge higher of two highest bits.
vmrglw a1r, z0r, z2r
vmrghw a2r, z1r, z3r
vmrglw a3r, z1r, z3r

The r suffix designates real components. Similar code will load, rearrange, and store the
imaginary components. This diagram illustrates the effects of the merge instructions:

 Construction of a High-Performance FFT

2.1, August 8, 2004 47

Observe that the elements within each block are now in order by the bit-reversals of the
highest two bits (00…, 10…, 01…, 11…). These elements are ready for writing to mem-
ory in the order they are in H. However, the four blocks are in order by the lowest two
bits (…00, …01, …10, …11), not the bit-reversals of those bits. This makes sense be-
cause we still want to perform a butterfly operation on this data, and it will be the same
butterfly we have used so far, taking as input elements indexed 0, 1, 2, and 3, which we
have placed in registers named a0r , a0i , a1r , a1i , a2r , a2i , a3r , and a3i .

6.4.7.3 WriteReversedElements
When we have the results in registers named d0r , d0i , d1r , d1i , d2r , d2i , d3r , and d3i ,
we will write those in bit-reversed order:

AltiVec WriteReversedElements
stvx d0r, highbits00r, index
stvx d1r, highbits10r, index
stvx d2r, highbits01r, index
stvx d3r, highbits11r, index
stvx d0i, highbits00i, index
stvx d1i, highbits10i, index
stvx d2i, highbits01i, index
stvx d3i, highbits11i, index

6.4.7.4 PerformButterflies
An AltiVec implementation of PerformButterflies is:

AltiVec PerformButterflies
vnmsubfp b1r, a1i, w1i, a1r
vmaddfp b1i, a1r, w1i, a1i

00…00 00…01 00…11 00…10 01…00 01…01 01…11 01…10 10…00 10…01 10…11 10…10 11…00 11…01 11…11 11…10

00…00 01…00 01…01 00…01 00…10 01…10 01…11 00…11 10…00 11…00 11…01 10…01 10…10 11…10 11…11 10…11

00…00 10…00 11…00 01…00 00…01 10…01 11…01 01…01 00…10 10…10 11…10 01…10 00…11 10…11 11…11 01…11

Construction of a High-Performance FFT

48 2.1, August 8, 2004

vnmsubfp b2r, a2i, w2i, a2r
vmaddfp b2i, a2r, w2i, a2i
vnmsubfp b3r, a3i, w3i, a3r
vmaddfp b3i, a3r, w3i, a3i

vmaddfp c0r, b2r, w2r, a0r
vmaddfp c0i, b2i, w2r, a0i
vnmsubfp c2r, b2r, w2r, a0r
vnmsubfp c2i, b2i, w2r, a0i
vmaddfp c1r, b3r, w3r, b1r
vmaddfp c1i, b3i, w3r, b1i
vnmsubfp c3r, b3r, w3r, b1r
vnmsubfp c3i, b3i, w3r, b1i

vmaddfp d0r, c1r, w1r, c0r
vmaddfp d0i, c1i, w1r, c0i
vnmsubfp d1r, c1r, w1r, c0i
vnmsubfp d1i, c1i, w1r, c0i
vnmsubfp d2r, c3i, w1r, c2r
vmaddfp d2i, c3r, w1r, c2i
vmaddfp d3r, c3i, w1r, c2r
vnmsubfp d3i, c3r, w1r, c2i

The above code presumes that weight values have been loaded into registers named w1r ,
w1i , w2r , w2i , w3r , and w3i .

6.4.8 Generate Final Weights
Earlier butterfly routines required six values for one weight for one value of k0 at a time.
FFT4_Final now performs butterflies for four values of k0 at a time, so it needs values
for four weights. Further, the values of k0 are not consecutive, and their order varies de-
pending on N, so FFTs of different lengths need different groups of weights.

In one iteration on q, FFT4_Final performs butterflies using values for k0 of 2N-40+kL,
2N-42+kL, 2

N-41+kL, and 2N-40+kL, where kL has the value loaded from IndexTable . The
butterfly data is in the processor registers in that order (0, 2, 1, and 3), so the weight val-
ues should be available in that order.

This is all the information we need to generate weights for FFT4_Final . First, the six
weight values for four butterflies are packaged in groups of four, like this:

FinalWeights
typedef struct {
 float w1r[4], w1i[4], w2r[4], w2i[4], w3r[4], w3i[4];
} FinalWeights;

Next, the values are calculated and stored by GenerateFinalWeights , below.

The expression “r4kL + kHprime*rn ” used in the code below equals r(4(2N-4kH+kL)),
which is r(4k0), as required. (See section 5.3.) To see this, note that r4kL is assigned the

 Construction of a High-Performance FFT

2.1, August 8, 2004 49

value r(4kL), rn is assigned the value 1/n , which is 1/2N, and kHprime represents Hk′ .
Then:

 r4kL + kHprime*rn = () Nkkr 2/4 HL ′+ .

 () () N
HL krkr 2/24 2+= , by definition of Hk′ and Lemma (1).

 () ()H
N krkr 2

L 24 −+= , by Lemma (4).

 ()H
224 kkr N

L
−+= , by Lemma (3).

 ()04kr= , by definition of kL and kH.

GenerateFinalWeights
static int GenerateFinalWeights(
 FinalWeights **weights, // Pointer to weight array address.
 int NewLength, // New length to support (1<<N).
 FinalIndices *indices // Index array address.)
{
 const double rn = 1./NewLength;
 int kHprime, q;

 // Try to allocate space and check result.
 FinalWeights *p = (FinalWeights *)
 realloc(*weights, NewLength/16 * sizeof **weights);
 if (p == NULL)
 return 1;

 for (q = 0; q < NewLength/16; ++q)
 {
 const int kL = indices[q].read;
 const double r4kL = r(4*kL);
 for (kHprime = 0; kHprime < 4; ++kHprime)
 {
 const double x = TwoPi * (r4kL + kHprime*rn);
 p[q].w1r[kHprime] = cos(x);
 p[q].w1i[kHprime] = tan(x);
 p[q].w2r[kHprime] = cos(x+x);
 p[q].w2i[kHprime] = tan(x+x);
 p[q].w3r[kHprime] = 2. * p[q].w2r[kHprime] – 1.;
 p[q].w3i[kHprime] = tan(3.*x);
 }
 }

 // Pass address back to caller.
 *weights = p;

 return 0;
}

6.4.9 Update Kernel
The new FFT4_Final routine must be passed a table of indices and an array of weights
different from the previous weights, so the kernel has to pass the new arguments:

Construction of a High-Performance FFT

50 2.1, August 8, 2004

FFT Kernel with Final Indices and Weights
if (N & 1)
 FFT8_0Weights(vOut, vIn, 1<<N);
else
 FFT4_0Weights(vOut, vIn, 1<<N);

nLower = N&1 ? 3 : 2;
for (n = nLower; n < N - 4 ; n += 2)
 FFT4_0Weights(vOut, vOut, 1<<N - n);

for (k0 = 1 ; nLower < N - 4 ; nLower += 2)
for (; k0 < 1<<nLower; ++k0)
for (n = nLower; n < N - 4 ; n += 2)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);

if (n < N - 2)
 FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);

FFT4_Final(vOut, 1<<N - 2, finalIndices, finalWeights);

6.5 FFT Kernel Routine
The inputs to the FFT kernel are vIn , vOut , N, weights , finalIndices , and
finalWeights . We can take the code fragment we have developed and make it into a
complete routine:

FFT Kernel Routine
static void FFT_Kernel(
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int N, // N.
 const CommonWeight *weights, // Common weight values.
 const FinalIndices *finalIndices,// Index pairs.
 const FinalWeights *finalWeights // Final weight va lues.
)
{
 int n, nLower, k0;

 if (N & 1)
 FFT8_0Weights(vOut, vIn, 1<<N);
 else
 FFT4_0Weights(vOut, vIn, 1<<N);

 nLower = N&1 ? 3 : 2;
 for (n = nLower; n < N - 4 ; n += 2)
 FFT4_0Weights(vOut, vOut, 1<<N - n);

 for (k0 = 1 ; nLower < N - 4 ; nLower += 2)
 for (; k0 < 1<<nLower; ++k0)
 for (n = nLower; n < N - 4 ; n += 2)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);

 if (n < N - 2)
 FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);

 Construction of a High-Performance FFT

2.1, August 8, 2004 51

 FFT4_Final(vOut, 1<<N - 2, finalIndices, finalWeights);
}

7 Out-of-Cache Performance

7.1 Introduction
The FFT kernel developed so far is excellent when all the memory needed fits within
processor cache, including the transform data, the weights and table of indices, and any
miscellaneous data. When the memory does not fit within processor cache, problems oc-
cur.

7.1.1 Motorola PowerPC CPU 7400 Cache Architecture
Much discussion in previous sections is generally applicable to a variety of computer ar-
chitectures. To discuss designing for high-performance in the presence of cache architec-
ture issues, it is necessary to be more specific. This paper addresses designing for the
Motorola PowerPC CPU 7400 or similar CPUs. This specific CPU will be assumed
throughout the rest of section 7.

The level-1 (L1) data cache in the Motorola PowerPC CPU 7400 is 32,768 bytes. The
cache is partitioned into 128 sets. Each set contains eight blocks, and each block is 32
bytes. This cache architecture is not uncommon, and other processors may have a similar
architecture with different dimensions.

Each memory address maps to one set. That is, when the contents of a memory address
are brought into cache, they must go into the set assigned to the address. Any of the eight
blocks within the set may be used. If all blocks are in use, the CPU makes a block avail-
able by selecting a block and discarding the data in it or writing it to memory, as appro-
priate. (The CPU approximates selecting the least-recently-used block to reuse.)

Using C notation, the byte with address a is:

• the byte numbered a%32 in a block and
• mapped to the cache set numbered a/32 % 128 .

Concerning cache set mapping, observe that data separated by multiples of 4096 bytes
(32·128) map to the same cache set (if a and b differ by a multiple of 4096, then a/32 %

128 equals b/32 % 128).

Cache blocks are also called cache lines. 32-byte cache blocks are different from the 16-
byte blocks loaded by lvx instructions and from the programmer-specified blocks in dst
instructions.

I will refer to the group of 32 bytes in memory that would be loaded into a cache block
together as a cache block even while it is only in memory and not in cache.

Construction of a High-Performance FFT

52 2.1, August 8, 2004

7.1.2 Cache Problems
The cache architecture imposes three important constraints:

• The number of elements that can fit in cache is limited. For complex numbers of
eight bytes (two floating-point numbers of four bytes each), 4096 elements can fit
in cache.

• The number of elements that can fit in a cache set is limited. Elements from eight
different addresses that map to the same cache set can fit in the set.

• It is not possible to read less than one cache block from memory (in the absence
of special control operations). Reading any byte from memory causes all bytes in
the same block to be read and stored in cache.

We will find that although the entire FFT cannot be perform entirely in cache, the FFT
can be partitioned into sets of butterfly operations such that each set can be performed en-
tirely in cache.

7.2 The Cache Size Problem
Our goal is to partition the FFT into sets of butterfly operations such that each set can be
performed entirely in cache.

A radix-2m butterfly requires 2m input elements, along with some amount of constant
data. Choosing a sufficiently small m yields a butterfly for which all the data fits in cache.
Then each iteration of the loop on k0 can be performed in cache.

If m is even smaller, it may be that the data for several radix-2m butterflies fit in cache.
Then several iterations of the loop on k0 can be performed in cache. In that case, we have
a choice:

• We could read the data for one butterfly from memory into cache, perform the
butterfly, and write the results to memory.

• We could read the data for several butterflies, perform those butterflies, and write
the results to memory.

Depending on the bus characteristics, there may be advantages to reading more data se-
quentially at one time. If so, we prefer the latter choice, and we will cluster iterations of
the loop on k0 .

7.3 The Cache Set Size Problem
In the early passes of an FFT, n is small, so 2N-n-m is large. Consider array element indices
of the form 2N-nk0 + 2N-n-mk1 + k2, which are used by butterfly operations. A single radix-4
butterfly uses four values of k1. These values are stored in elements that are separated by
large multiples of a power of two (2N-n-m elements), so they are assigned to the same
cache set. One cache set can hold values from eight locations. So all data for a single
radix-4 butterfly can fit in a single cache set. After performing such a butterfly, we could
increment k2 and repeat the process until the entire pass were completed. Thus it is possi-

 Construction of a High-Performance FFT

2.1, August 8, 2004 53

ble to perform an entire butterfly pass while reading and writing each element only once,
not having to reload any element.

However, we wish to perform more than one pass of radix-4 butterflies.

Consider a butterfly in the third radix-4 pass of an FFT. It needs four elements for input.
Each of those elements is calculated in the second radix-4 pass from four different input
elements. So if we wish to calculate two radix-4 passes without reloading data from
memory, there must be 16 elements in cache at the same time, and those 16 elements are
widely separated in the array, by multiples of a large power of two. Therefore, they can-
not fit in cache simultaneously unless the cache associativity is at least 16.

If you were so fortunate as to have a cache with an associativity of 16, attempting three
radix-4 passes would require an associativity of 64.

However, doing one radix-4 pass on one set of data that has been read into cache is unac-
ceptable. While data is in cache, we want to take the FFT operation from vn to vn+m for m
of a fairly large size. To perform this radix-2m butterfly, we need 2m elements, and we
need them to fit in a cache set. Since they do not fit in a cache set in their original mem-
ory locations, we must move them.

Suppose we have a buffer of length b elements where we can store data temporarily. We
can copy the elements we need for one radix-2m butterfly into the buffer, perform the but-
terfly, and copy the elements back to their original locations (or to new locations if we
like). If the buffer will hold more elements than we need for one butterfly, we can do
several butterflies at one time. The plan is:

(1) Gather elements together: Copy the data for the butterflies from spread-out ad-
dresses in the data array to sequential addresses in the buffer.

(2) Do calculations: For each set of 2m elements in the buffer, perform a radix-2m
butterfly3.

(3) Scatter elements back: Copy the data from the buffer to spread-out addresses in
the data array.

The primary effect of this copying is to move the data from addresses where they map to
the same cache set to addresses where they map to different cache sets. Once the data is
in the buffer, it may be accessed freely in any order without casting other buffered data
out of cache. So we may perform radix-2m butterflies efficiently, and the data needs to be
read from the data array once and written back to it once. The buffer may reside entirely
cache, so it never needs to be written to or read from memory, although (hopefully small)
portions of it may be cast out and reread as unintended byproducts of other memory
operations.

3 This does not mean to perform a radix-2m butterfly as one operation as shown in FFT_Butterflie s, but to perform
it by any efficient means, such as a composition of radix-8 and radix-4 butterflies.

Construction of a High-Performance FFT

54 2.1, August 8, 2004

How big should the buffer be, what value should b have? There are two advantages to in-
creasing b:

• The larger b is, the larger m may be, and the more calculations may be done per
element per buffer turnover.

• Using a larger b without a larger m may gain some advantage in data transfer on
the bus between memory and cache, if the bus has characteristics such as transfer-
ring sequential addresses more quickly than disordered addresses.

In the latter case, consider that using a larger b without a larger m means the data for
more butterflies can be held in the buffer. If m is increased by one, the number of differ-
ent (and nonsequential) locations that must be read is doubled. However, if b is increased
while m remains the same, more data can be read (sequentially) from each of the 2m loca-
tions. Thus, increasing b may increase data transfer rates, while increasing m increases
the computations per buffer turnover.

Half of cache is a good choice. If the buffer filled all of cache, other necessary data, such
as weights, could not be kept in cache. If we make the buffer smaller, we lose the above
performance advantages.

The truly ambitious implementer could use a buffer between half and all of cache.

A design to use such a buffer for the first stage of an FFT is in section 7.6.1.

7.4 The Cache Block Size Problem
Reading any byte from memory causes all bytes in the same cache block to be read and
stored in cache. For the most part, this is not a problem for the FFT. Data is operated on
in AltiVec blocks of four floating-point numbers at a time. Four single-precision floating-
point numbers take 16 bytes, half of the 32-byte cache block. If real and imaginary com-
ponents of the complex data are stored in the same cache block, then four complex ele-
ments occupy exactly one cache block, and the cache block size coincides well with the
FFT operations.

If the real and imaginary components are stored separately, some attention must be paid
to cache block use.

Most FFT operations iterate sequentially through values of k0 and k2 . As the operations
iterate through the data, they will use first one half and then the other half of each cache
block, thus completing the use of all the data in the block while it is in cache.

An exception is FFT4_Final , which processes four-element blocks in an order partially
dictated by the bit-reversal permutation. This order does not necessarily use both halves
of a cache block in successive iterations.

However, it can be made to do so. As stated in section 6.4.4, there are two constraints
about storing index pairs, but we otherwise have a good deal of freedom in arranging the

 Construction of a High-Performance FFT

2.1, August 8, 2004 55

index table. We can cluster indices that reside in the same cache blocks. Recall that each
index in the table (kL) addresses a group of four elements (4kL+0, 4kL+1, 4kL+2, and
4kL+3). With separated real and imaginary components, we need eight array elements to
fill a cache block, so we need two indices (kL and kL+1) to be clustered in the index table.

For example, suppose that kL is even and the arrays of real and imaginary components
each begin on cache block boundaries. After we use the kL-elements (see terminology in
section 6.4.3), we will want to use the (kL+1)-elements whose components are in the
same blocks. (Note that we have now added the constraint that the arrays should be
aligned to cache-block boundaries for best performance. When kL is even, we are depend-
ing on the kL-elements to be in the same blocks as the (kL+1)-elements and not the (kL-
1)-elements.)

However, organizing the table is not as simple as pairing each even kL with kL+1. When
the kL-elements are used, the Lk′ -reversed-elements are used as well. If LkkL ′≠ , then the

Lk′ -elements and kL-reversed-elements are also used with the preceding or following in-
dex table entry. We must cluster all of these elements with their cache-block partners.

Fortunately, this is accomplished with changes to GenerateFinalIndices :

Cache-Block Clustering GenerateFinalIndices
static int GenerateFinalIndices(
 FinalIndices **indices, // Pointer to index array address.
 int NewLength // New length to support (1<<N).)
{
 // Prepare to bit - reverse a number of N - 4 bits (see below).
 const int shift = 32 - (ilog2(NewLength) - 4);
 int kL;

 // Try to allocate space and check result.
 FinalIndices *p = (FinalIndices *)
 realloc(*indices, NewLength/16 * sizeof **indices);
 if (p == NULL)
 return 1;

 // Pass address back to caller.
 *indices = p;

/* This routine generates indices for the kL part o f the element
 index, which is the index minus the two high bits a nd the two
 log bits. This routine is never called with length less than
 16, so those four bits are always there to remove.

 In addition, we want to cluster the indices by cach e blocks,
 so we need to remove another low bit, and therefore another
 high bit. This requires that the length be at leas t 64.

 For smaller lengths, all the elements do not form a whole
 cluster, so we will generate those indices with sep arate code.
*/

 // Handle small sizes.

Construction of a High-Performance FFT

56 2.1, August 8, 2004

 if (NewLength < 64)
 {
 *(p++) = Construct(0, 0); // (0, 0) for lengths 16 and 32.
 if (16 < NewLength)
 *(p++) = Construct(1, 1); // (1, 1) for length 32.
 }

 // Do other sizes, with whole clusters of cache blo cks.
 else
 {
 // Provide names for high bit of zero (h0) and one (h1).
 const unsigned int h0 = 0, h1 = rw(1) >> shift;

 // Iterate through all values of kL excluding high bit and low bit.
 for (kL = 0; kL < NewLength/16/2; kL += 2)
 {
 // rw(kL) reverses kL as a 32 - bit number. To get it as
 // the reversal of an N - 4 bit number, shift right to
 // remove 32 - (N - 4) bits.
 const int kLprime = rw(kL) >> shift;

 // If kLprime < kL, then kL in a previous iteration had the
 // value kLprime has now, and we do not want to repeat it.
 if (kL <= kLprime)
 {
 // Use shorter names for forward kL (F) and reverse kL (R).
 const unsigned int F = kL, R = kLprime;

/* To convince yourself the following code is corre ct,
 first check that each pair of addresses are bit - reversals
 of each other (h0|R|1 is paired with h1|F|0, and so on).

 Next, in the kL != kLprime case, check that each en try
 is preceded or followed by its reversal (a pair wit h
 a write to h1|R|0 is adjacent to a pair with a read
 from h1|R|0, and so on).

 Finally, in the kL == kLprime case, check that each of
 the four executed entries either is its own reversa l
 (h0|F|0 equals h0|R|0 when F == R) or its preceded or
 followed by its reversal (same as kL != kLprime cas e).
*/
 *(p++) = Construct(h0|F|0, h0|R|0);
 if (kL != kLprime)
 {
 *(p++) = Construct(h0|R|0, h0|F|0);
 *(p++) = Construct(h1|F|0, h0|R|1);
 *(p++) = Construct(h0|R|1, h1|F|0);
 *(p++) = Construct(h1|F|1, h1|R|1);
 }
 *(p++) = Construct(h1|R|1, h1|F|1);
 *(p++) = Construct(h0|F|1, h1|R|0);
 *(p++) = Construct(h1|R|0, h0|F|1);
 }
 }
 }

 Construction of a High-Performance FFT

2.1, August 8, 2004 57

 return 0;
}

In addition to cluster final-pass processing by cache blocks, cache control operations can
be inserted into a variant of FFT4_Final . This may speed up performance by flushing
data soon after we are done writing it. This releases the unneeded cache blocks, ensuring
those blocks will be reused first and avoiding the possibility the processor will select for
replacement blocks containing data that is still needed.

7.5 Structuring the Multiple -Stage FFT
In section 3.2, we chose values of mp based on our target processor architecture. To solve
cache problems, we consider values of mp based on our cache architecture. Instead of the
term “passes” used in the initial kernel, I use the term “stages” in describing the out-of-
cache FFT. Mathematically, stages and passes are identical except that we generally use
larger values of m for stages.

In each stage, we will perform radix- pm2 butterflies. Those butterflies will in turn be
composed of butterflies using the existing butterfly routines. The first stage will be per-
formed using a first pass of FFT4_0Weights or FFT8_0Weights followed by passes of
radix-4 butterflies. In every other stage, only radix-4 butterflies will be used. Thus mp
must be even for every stage after the first, and m0 must be even or odd according to
whether N is even or odd. Also, m0 must be at least 2 (the smallest m available in an im-
plemented butterfly routine), although we will never want to use a value this low.

In the first stage, m must be not greater than log2(b), so that the data for one butterfly fits
in the buffer described in section 7.3. m might be smaller because completely packing the
buffer with the data for one butterfly means that input elements to the butterfly will be
adjacent in memory, and then it is difficult to access them with AltiVec instructions.
There is even some question whether log2(b)-2 is too high for m, as then we must use
FFT4_1WeightPerIteration for some of the computation with the buffer rather than
FFT4_1WeightPerCall . For this design, I choose to limit m to log2(b)-4. (See also sec-
tions 7.5.2 and 7.6.1.3.)

After the first stage, it is possible to perform additional stages using the gather-scatter
technique. Such stages would also have their values of m constrained by log2(b). Such
stages are not needed except for FFTs on extraordinarily long vectors and are not exam-
ined in this paper.

The penultimate stage is flexible, but the final stage has severe constraints, so I will dis-
cuss the last stage and then return to the penultimate stage.

In the last stage, we wish to do the bit-reversal permutation. The bit-reversal wreaks
havoc with cache. Cache and bus performance are generally enhanced by sequential ac-
cess. Bus performance may be hindered by non-sequential access, and cache performance
is hindered by repeated access to more than eight addresses differing only in their high
bits. However, while doing a bit-reversal permutation, accessing eight consecutive ele-

Construction of a High-Performance FFT

58 2.1, August 8, 2004

ments in one place causes necessitates accesses to eight different places that map to the
same cache set. Any more overflow a cache set and cause thrashing.

In section 7.4, I discussed clustering elements in cache blocks. If real and imaginary
components are stored separately and are four-byte floating-point numbers, there are
eight components in one cache block. The cluster of butterflies needs to read eight such
cache blocks and write results to eight other cache blocks (at the reversed addresses), in-
termingled with also reading the latter blocks and writing the former blocks. Fortunately,
the cache associativity is eight and the former and latter blocks are usually (not always!)
mapped to different cache sets.

This means eight elements strain the cache associativity as far as it will go. To do two
radix-4 passes, we would need 16 elements. Therefore, FFT4_Final is the only butterfly
operation we can put in the final stage without breaking it. The final pass is the final sta-
ge, so mP-1=2. With three stages, P is 3, so mP-1=m2=2.

Given a first stage with some m0 and a last stage with m2=2, the penultimate stage is de-
termined: m1=N-2-m0.

If m1 is small enough that all the data for at least one radix- 12m butterfly in the penulti-
mate stage fits in cache, then three stages suffice to perform the FFT with good cache be-
havior in each stage. If not, then more stages are required.

7.5.1 Summary
Summarizing our multiple-stage FFT design:

• m0 is odd or even according to whether N is odd or even.
• m0 is no larger than the cached buffer of b elements will permit.
• m0 may be slightly smaller due to AltiVec inefficiencies with elements located too

closely together.
• m2 is 2.
• m1 is whatever is left over.
• m1 is no larger than the cache will permit.
• m1 may be zero, a degenerate case indicating the stage is not used.

7.5.2 PowerPC CPU 7400 Design
Level-1 cache on the PowerPC CPU 7400 is 32,768 bytes. If our buffer for gathering data
is half of cache, then b is 2048. (2048 complex elements of eight bytes each occupy
16,384 bytes.) Because support for butterfly data spaced more closely together than
AltiVec blocks (16 bytes, four elements) will not be included in our implementation of
the first-stage of the multiple-stage FFT, m0 must not be greater than log2(b/4), which is
9. So m0 could be 9 or 8, according to whether N is odd or even.

However, these values require the use of FFT4_1WeightPerIteration in the first stage,
as discussed in section 7.6.1.3. We may find values of 7 or 6 preferable. The value of m0

 Construction of a High-Performance FFT

2.1, August 8, 2004 59

is a flexible part of the FFT design, easily changed by adjusting a compile- or assembly-
time value, so it can be left for tuning after measurements are made on a target system.

The elements needed for a radix- 12m butterfly have indices 21

112 kkmnN +−− for
120 1

mk <≤ . In the penultimate stage, N-n1-m1 is 2, so the indices are 4k1+k2 and range

from k2 to () 2124 1 km +− , spanning ()124 1 −m elements. So ()124 1 −m must be not more
than the number of elements that we can have in cache. 4096 elements would fit but
would not leave room for weights, so ()124 1 −m must be less than 4096. Then m1 must be
less than 10 and even, so it is at most 8.

At the limits, m0 is 9, m1 is 8, and m2 is 2, so N is 19, and the longest vector for which we
can efficiently compute the DFT on a PowerPC CPU 7400 without a fourth stage has
219=524,288 elements. If m0 is limited to 7, then the longest vector for which we can effi-
cient compute the DFT has 217=131,072 elements.

7.6 Stage Designs
Now that we have a design for the multiple-stage FFT, we can design the stages them-
selves. We return to our first FFT kernel, from section 3.1.2:

for (p = 0; p < P ; ++p)
for (k0 = 0; k0 < 1<<n[p]; ++k0)
 FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], k0, 1<<N - n[p]);

We have two or three stages, so we can unroll the loop on p:

for (k0 = 0; k0 < 1<<n[0]; ++k0)
 FFT_Butterflies(m[0], v[n[1]], v[n[0]], k0, 1<<N - n[0]);

if (0 < m[1])
for (k0 = 0; k0 < 1<<n[1]; ++k0)
 FFT_Butterflies(m[1], v[n[2]], v[n[1]], k0, 1<<N - n[1]);

for (k0 = 0; k0 < 1<<n[2]; ++k0)
 FFT_Butterflies(m[2], v[n[3]], v[n[2]], k0, 1<<N - n[2]);

Let m0 have the value of m0. Since m1 is N-2-m0, m2 is 2, n0 is 0, n1 is m0, and n2 is N-2,
and the code becomes:

for (k0 = 0; k0 < 1 ; ++k0)
 FFT_Butterflies(m0, vOut, vIn, k0, 1<<N);

if (0 < N -2- m0)
for (k0 = 0; k0 < 1<<m0 ; ++k0)
 FFT_Butterflies(N -2- m0, vOut, vOut, k0, 1<<N - m0);

for (k0 = 0; k0 < 1<<N - 2; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 4);

Construction of a High-Performance FFT

60 2.1, August 8, 2004

The first loop has only one iteration:

FFT_Butterflies(m0, vOut, vIn, 0, 1<<N);

if (0 < N -2- m0)
for (k0 = 0; k0 < 1<<m0 ; ++k0)
 FFT_Butterflies(N -2- m0, vOut, vOut, k0, 1<<N - m0);

for (k0 = 0; k0 < 1<<N - 2; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 4);

We will write new routines to perform each section in the above code:

FFT_FirstStage(m0, vOut, vIn, 1<<N);

if (0 < N -2- m0)
 FFT_PenultimateStage(vOut, m0, N);

FFT_FinalStage(vOut, 1<<N - 2);

Actually, the new routines will need prepared constants to compute efficiently:

Multiple -Stage Kernel
FFT_FirstStage(m0, vOut, vIn, 1<<N, weights);

if (0 < N -2- m0)
 FFT_PenultimateStage(vOut, m0, N, weights);

FFT_FinalStage(vOut, 1<<N - 2, finalIndices, finalWeights);

7.6.1 First Stage
When called via:

FFT_FirstStage(m0, vOut, vIn, 1<<N, weights);

FFT_FirstStage must perform the calculations defined by:

FFT_FirstStage Prototype
FFT_Butterflies(m0, vOut, vIn, 0, 1<<N);

where m0 and N are large. To do this efficiently, we will create a new specialization of
FFT_Butterflies for this situation. We will gather data into a buffer, calculate some
butterflies, and scatter the data back to a data array.

7.6.1.1 Gather and Scatter
Here are subroutines to gather the data into a buffer and scatter it back to an array. To get
the 2m elements needed for all the values of k1 in a butterfly, we iterate k1 through each
value. To get all the data for a cluster, we iterate on c . Data is gathered from spread-apart
locations in the data array (using c1*k1) and collected in close-together locations in the

 Construction of a High-Performance FFT

2.1, August 8, 2004 61

buffer (using cluster*k1). At each location, sequential data is copied by iterating c .
Each time these routines are called, the caller passes a different value of k2 , using it to
step through the data array.

Gather
static void Gather(
 ComplexArray destination, // Destination of copying.
 ComplexArray source, // Source of copying.
 int u1, // Upper limit on k1, equals 1<<m.
 int c1, // Coefficient for k1.
 int k2, // Current value of k2.
 int cluster // Butterfly sets per cluster.
)
{
 int k1, c;

 for (k1 = 0; k1 < u1 ; ++k1)
 for (c = 0; c < cluster; ++c)
 destination[cluster*k1 + c] = source[c1*k1 + k2+c];
}

Scatter
static void Scatter(
 ComplexArray destination, // Destination of copying.
 ComplexArray source, // Source of copying.
 int u1, // Upper limit on k1, equals 1<<m.
 int c1, // Coefficient for k1.
 int k2, // Current value of k2.
 int cluster // Butterfly sets per cluster.
)
{
 int k1, c;

 for (k1 = 0; k1 < u1 ; ++k1)
 for (c = 0; c < cluster; ++c)
 destination[c1*k1 + k2+c] = source[cluster*k1 + c];
}

7.6.1.2 Calculating Butterflies
Here is a first version of FFT_FirstStage :

First FFT_FirstStage
static void FFT_FirstStage(
 int m, // log2 of butterfly radix.
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int c0, // Coefficient for c0.
 const CommonWeight weights[] // Array of weight values.
)
{
 // Coefficient for k1 is coefficient for c0 divided by 1<<m.
 const int c1 = c0 >> m;
 const int u1 = 1<<m;

Construction of a High-Performance FFT

62 2.1, August 8, 2004

 // Cluster size is how many sets fit in buffer at o ne time.
 const int cluster = b >> m;

 int k2;

 // Process values of k2 in clusters.
 for (k2 = 0; k2 < c1; k2 += cluster)
 {
 Gather(buffer, vIn, u1, c1, k2, cluster);
 FFT_Butterflies(m, buffer, buffer, 0, b);
 Scatter(vOut, buffer, u1, c1, k2, cluster);
 }
}

The code is simple enough, but why is b passed to FFT_Butterflies ? That formal ar-
gument is c0 , the coefficient for k0 , which is 2N-n in the mathematics. In this initial pass,
n is 0, so we would normally pass 2N, or 1<<N.

In FFT_Butterflies , c1 is derived from the formal argument c0 (actual argument b),
and c1 is used in two ways. It is the coefficient for k1 , used to locate elements in the ar-
ray, and it is the upper bound of the loop on k2 , so it specifies the number of iterations for
k2 .

In both cases, the normal value of c1 would not work. First, we have moved elements
from their original locations; they are at different indices in buffer . Second, we have
gathered only cluster sets of data, not all of them.

We can see that passing b as the actual argument satisfies both purposes.
FFT_Butterflies calculates “c1 = c0 >> m ”. Having been passed b for c0 , this gives
b>>m, which equals cluster . As we can see from the Gather code, cluster is both the
coefficient for k1 used to place elements in the buffer and the number of sets of data.

As written, this code requires that cluster divide c1 , so that k2 ends at exactly c1 after a
whole number of clusters. cluster is b>>m, so b>>m must divide c1 , which means b must
divide c1<<m. c1 is c0>>m, and the formal argument c0 is passed 1<<N as the actual ar-
gument (in section 7.6), so b must divide 1<<N. Since 1<<N is a power of two, this
amounts to saying b must be a power of two. This restriction may be lifted by separating
a final iteration from the loop to handle a partial cluster. Such a modification would have
to be propagated to the more efficient code below. That is not shown in this paper.

Another constraint on b is that it must be a multiple of 1<<m. b is divided by 1<<m to set
cluster , and then each call to Gather gathers data for cluster butterflies, so it gathers
cluster<<m elements. If b is a multiple of 1<<m, then cluster<<m is b. If not, only
cluster<<m elements are gathered, and cluster<<m should be passed to
FFT_Butterflies in lieu of b. This is the same as reducing b to the nearest multiple of
1<<m.

 Construction of a High-Performance FFT

2.1, August 8, 2004 63

7.6.1.3 Specializing the Butterflies
FFT_FirstStage contains a call to FFT_Butterflies :

FFT_Butterflies(m, buffer, buffer, 0, b);

This should be replaced with a specialization optimized for this situation. Observe that
this call transforms the contents of buffer from v0 to vm. We already have optimized
code that does this. The first sets of loops in the FFT kernel transform v0 (in vIn) to

pnv

(in vOut) . We can take this code from the kernel:

if (N & 1)
 FFT8_0Weights(vOut, vIn, 1<<N);
else
 FFT4_0Weights(vOut, vIn, 1<<N);

nLower = N&1 ? 3 : 2;
for (n = nLower; n < N - 4 ; n += 2)
 FFT4_0Weights(vOut, vOut, 1<<N - n);

for (k0 = 1 ; nLower < N - 4 ; nLower += 2)
for (; k0 < 1<<nLower; ++k0)
for (n = nLower; n < N - 4 ; n += 2)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);

and make appropriate substitutions. To know what substitutions to make, let us review
the code. This code:

• reads from vIn and writes to vOut ,
• evaluates N & 1 to decide whether radix-8 or radix-4 is used first,
• uses N-4 in various loop tests to limit n to N-4 (thus yielding vN-4), and
• passes 1<<N and 1<<N-n for the c0 argument, which is used for element spacing

and loop counting.

To use this code for our new purpose, we will make the following substitutions.

• We want to operate on the data in buffer, so vIn and vOut become buffer .
• We will start with radix-8 or radix-4 according to whether the formal argument m

is odd or even, so N & 1 becomes m & 1 .
• We want to calculate vm rather than vN-4, so the loop limits change from N-4 to m.
• The vector has length b instead of 1<<N, so 1<<N becomes b, and 1<<N-n becomes

b>>n .

This yields:

if (m & 1)
 FFT8_0Weights(buffer, buffer, b);
else

Construction of a High-Performance FFT

64 2.1, August 8, 2004

 FFT4_0Weights(buffer, buffer, b);

nLower = m&1 ? 3 : 2;
for (n = nLower; n < m ; n += 2)
 FFT4_0Weights(buffer, buffer, b>>n);

for (k0 = 1 ; nLower < m ; nLower += 2)
for (; k0 < 1<<nLower; ++k0)
for (n = nLower; n < m ; n += 2)
 FFT4_1WeightPerCall(buffer, k0, b>>n, weights[k0]);

Note that if b>>n reaches 16, the final loop on n is better done with a call to
FFT4_1WeightPerIteration (which is specialized for this case) than with a loop calling
FFT4_1WeightPerCall . This design, while it will calculate correct results if b>>n is 16,
is not the most efficient in that case. In the current design, this routine will not be called
on to do this. n reaches the value m-2, and m is passed the value m0, so b>>n reaches
b>>m0-2 . We will select b and m0 to keep 02/ mb above 16.

7.6.1.4 Finished Routine
Putting the new code into the routine gives:

FFT_FirstStage
static void FFT_FirstStage(
 int m, // log2 of butterfly radix.
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int c0, // Coefficient for c0.
 const CommonWeight weights[] // Array of weight values.
)
{
 // Coefficient for k1 is coefficient for c0 divided by 1<<m.
 const int c1 = c0 >> m;
 const int u1 = 1<<m;

 // Cluster size is how many sets fit in buffer at o ne time.
 const int cluster = b >> m;

 int n, nLower, k, k0, k2;

 // Process values of k2 in clusters.
 for (k2 = 0; k2 < c1; k2 += cluster)
 {
 Gather(buffer, vIn, u1, c1, k2, cluster);

 if (m & 1)
 FFT8_0Weights(buffer, buffer, b);
 else
 FFT4_0Weights(buffer, buffer, b);

 nLower = m&1 ? 3 : 2;
 for (n = nLower; n < m ; n += 2)
 FFT4_0Weights(buffer, buffer, b>>n);

 Construction of a High-Performance FFT

2.1, August 8, 2004 65

 for (k0 = 1 ; nLower < m ; nLower += 2)
 for (; k0 < 1<<nLower; ++k0)
 for (n = nLower; n < m ; n += 2)
 FFT4_1WeightPerCall(buffer, k0, b>>n, weights[k0]);

 Scatter(vOut, buffer, u1, c1, k2, cluster);
 }
}

7.6.2 General Stages
If an FFT is being performed on a very long vector, more than three stages are required.
(See the end of section 7.5.) After the first stage, the input elements to butterflies are still
far apart and must still be gathered together. However, the code in FFT_FirstStage can-
not be used as is, as it is structured for n=0. The code in FFT_PenultimateStage , below,
is structured for general n, but it does not gather and scatter data. To support high-
performance with very long vectors, another stage would have to be designed.

A routine implementing such a stage would suffice to handle vectors of any length, as it
could be used as many times as necessary to process any number of intermediate stages.
However, such a routine is not discussed in this paper.

For the reader who would design such a routine, note that an argument k0 must be added
to the Gather and Scatter routines. The routines in section 7.6.1.1 implicitly have k0=0,
since they are used only in the first stage.

7.6.3 Penultimate Stage
In the penultimate stage, n is large, so 2N-n-m is small, and the cache set size is not a prob-
lem. This means we do not need the gather-scatter technique used in the first stage. How-
ever, cache size is still a problem, so the penultimate stage must be done in sets of butter-
fly operations that can each be performed in cache.

When called via:

FFT_PenultimateStage(vOut, m0, N, weights);

FFT_PenultimateStage must perform the calculations defined by:

FFT_PenultimateStagePrototype
for (k0 = 0; k0 < 1<<m0 ; ++k0)
 FFT_Butterflies(N - m0- 2, vOut, vOut, k0, 1<<N - m0);

This code computes vN-2 from

0mv . Another way to compute vN-2 from
0mv , given that N-

2-m0 is even, is:

for (n = m0; n < N - 2; n += 2)
for (k0 = 0; k0 < 1<<n; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);

Construction of a High-Performance FFT

66 2.1, August 8, 2004

That is, compute vn for n= m0+2, m0+4, m0+6,…, N-2, where each vn being computed
form the previous one in this sequence by radix-4 butterflies. (For a reminder about this
loop structure, compare this code to the first FFT kernel in section 3.1.3.) To be general, I
will r eplace the actual argument m0 with a formal argument nStage , representing the
value of n for which vn is input to the stage.

The inner loop can be partitioned into groups of iterations such that all the input data for
each group fits in cache. Let g be the number of elements used in a group of iterations.
Generally, g should be as large as it can be without excluding other data, such as weights,
from cache. g might or might not be the same as b, the number of elements in the buffer
used in the first stage.

If g divides 1<<N, then the code to process the butterflies in groups is:

for (n = nStage; n < N - 2 ; n += 2)
for (k = 0 ; k < 1<<N ; k += g)
for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);

We could also write code that works for any value of g:

for (n = nStage; n < N - 2; n += 2)
{
 // Do whole groups up to last.
 for (k = 0 ; k < (1<<N) - g ; k += g)
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);

 // Do last group, whether partial or whole.
 for (k0 = k>>N - n; k0 < 1<<n ; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);
}

By removing the constraint, the latter code may allow use of a larger g, and that may im-
prove performance by grouping bus transactions into longer sequential accesses. For sim-
plicity, I will use the former code.

We have now grouped the butterflies within each iteration of n so that the data of the
group fits in cache, but, in one iteration on n, many such groups are processed. As multi-
ple iterations on n are executed, the data must be reloaded into cache as each group is be-
gun. Fortunately, k and n are independent, so we can easily swap the order of their loops:

for (k = 0 ; k < 1<<N ; k += g)
for (n = nStage; n < N - 2 ; n += 2)
for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);

Now we have partitioned all the butterflies in the penultimate stage into groups whose
data fits in cache, and we iterate through the groups only once. Therefore, this design for

 Construction of a High-Performance FFT

2.1, August 8, 2004 67

the penultimate stage will read each element from memory into cache exactly once and
write an element from cache to memory exactly once (assuming no external factors inter-
fere with cache operations and that the stage starts and finishes with no elements in
cache).

Cache control operations could be inserted before each iteration on k to read the data that
will be needed for the iteration and after each iteration to write data from cache to mem-
ory and make room in cache for new data.

Within this design, we can still reorganize the calculations for computational efficiency,
without affecting the cache grouping. As with the FFT kernel, the penultimate pass is best
performed by specialized code. The penultimate pass of the FFT is the final pass of this
stage. So, within the loop in k , we separate the last iteration on n:

for (k = 0; k < 1<<N; k += g)
{
 for (n = nStage; n < N - 4 ; n += 2)
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);

 for (k0 = k>>4 ; k0 < (k+g)>>4 ; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 16);
}

Note that the original for-loop on n performs this last iteration only if “n < N -2 ” evalu-
ates to true. This occurs if nStage < N -2 , which is true if there is any work for the rou-
tine to do at all. Our design calls FFT_PenultimateStage only if there is work for it, that
is, if 0 < N -2- m0. So we can omit the test “n < N -2 ” in this code.

In the FFT kernel, we found it useful to reorder the loops to group butterflies by weight.
That is possible here in the first iteration on k , when k is 0, so we will separate that itera-
tion. In the other iterations on k , weights are not used repeatedly in different passes.
(Compare the upper bound on k0 when n is n to the lower bound on k0 in the next pass,
when n is n+2: (k+g)>>N - n versus k>>N-(n+2) . If k is at least g, as it is after the first it-
eration, the latter is at least twice the former. So k0 always begins a new loop at a higher
value than it ended the previous loop.) The new code with the first iteration on k sepa-
rated is:

Early FFT_PenultimateStage
for (n = nStage; n < N - 4 ; n += 2)
for (k0 = 0 ; k0 < g>>N - n; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);

for (k0 = 0 ; k0 < g>>4 ; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 16);

for (k = g; k < 1<<N; k += g)
{
 for (n = nStage; n < N - 4 ; n += 2)
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0)

Construction of a High-Performance FFT

68 2.1, August 8, 2004

 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);

 for (k0 = k>>4 ; k0 < (k+g)>>4 ; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 16);
}

The loop:

for (k0 = 0; k0 < g>>4; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 16);

is equivalent to:

FFT4_1WeightPerIteration(vOut, g>>4, weights);

However, the loop:

for (k0 = k>>4; k0 < (k+g)>>4 ; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 16);

cannot be directly computed with FFT4_1WeightPerIteration , because it does not start
k0 at 0. We need a variation of FFT4_1WeightPerIteration that takes both lower and
upper bounds:

FFT4_1WeightPerIterationB(vOut, k>>4, (k+g)>>4, wei ghts);

The reader can see by inspecting FFT4_1WeightPerIteration in section 4.3.4 that the
following is an implementation of FFT4_1WeightPerIterationB :

FFT4_1WeightPerIterationB
static void FFT4_1WeightPerIterationB(
 ComplexArray vOut, // Address of output vector.
 int l0, // Lower bound on k0.
 int u0, // Upper bound on k0.
 const CommonWeight weights[] // Array of weight values.
)
{
 FFT4_1WeightPerIteration(vOut + (l0<<4), u0 - l0, weights + l0);
}

Now our second-stage code becomes:

for (n = nStage; n < N - 4 ; n += 2)
for (k0 = 0 ; k0 < g>>N - n; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);

FFT4_1WeightPerIteration(vOut, g>>4, weights);

for (k = g; k < 1<<N; k += g)
{

 Construction of a High-Performance FFT

2.1, August 8, 2004 69

 for (n = nStage; n < N - 4 ; n += 2)
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);

 FFT4_1WeightPerIterationB(vOut, k>>4, (k+g)>>4, wei ghts);
}

The two calls to FFT_Butterflies are efficiently computed by FFT4_1WeightPerCall ,
so we will replace them:

for (n = nStage; n < N - 4 ; n += 2)
for (k0 = 0 ; k0 < g>>N - n; ++k0)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);

FFT4_1WeightPerIteration(vOut, g>>4, weights);

for (k = g; k < 1<<N; k += g)
{
 for (n = nStage; n < N - 4 ; n += 2)
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);

 FFT4_1WeightPerIterationB(vOut, k>>4, (k+g)>>4, wei ghts);
}

Finally, we wish to change the orders of the first two loops and separate the k0=0 itera-
tion, as we did in the FFT kernel. The derivations are the same as for the kernel, so they
are left as an exercise for the reader. The only change in the resulting code is that nLower
is initialized to nStage instead of “N&1 : 3 : 2 ” (each value is the starting n in the re-
spective FFT structure) and the loop bound on k0 is changed from 1<<nLower to g>>N-

nLower . The new code is:

FFT_PenultimateStage
static void FFT_PenultimateStage(
 ComplexArray vOut, // Address of output vector.
 int nStage, // n at start of stage.
 int N, // N.
 const CommonWeight weights[] // Array of weight values.
)
{
 int n, nLower, k, k0;

 nLower = nStage;
 for (n = nLower; n < N - 4 ; n += 2)
 FFT4_0Weights(vOut, vOut, 1<<N - n);

 for (k0 = 1 ; nLower < N - 4 ; nLower += 2)
 for (; k0 < g>>N - nLower; ++k0)
 for (n = nLower; n < N - 4 ; n += 2)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);

 FFT4_1WeightPerIteration(vOut, g>>4, weights);

Construction of a High-Performance FFT

70 2.1, August 8, 2004

 for (k = g; k < 1<<N; k += g)
 {
 for (n = nStage; n < N - 4 ; n += 2)
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);

 FFT4_1WeightPerIterationB(vOut, k>>4, (k+g)>>4, wei ghts);
 }
}

7.6.4 Final Stage
When called via:

FFT_FinalStage(vOut, 1<<N - 2, finalIndices, finalWeights);

FFT_FinalStage must perform the calculations defined by:

FFT_FinalStage Prototype
for (k0 = 0; k0 < 1<<N - 2; ++k0)
 FFT_Butterflies(2, vOut, vOut, k0, 4);

and it must perform the bit-reversal permutation. This is identical to the function that
FFT4_Final was created to implement efficiently, so FFT_FinalStage could be:

FFT_FinalStage
static void FFT_FinalStage(
 ComplexArray vOut, // Address of output vector.
 int u0, // Upper bound on k0.
 const FinalIndices IndexTable[], // Array of index pairs.
 const FinalWeights weights[] // Array of weight values.
)
{
 FFT4_Final(vOut, u0, IndexTable, weights);
}

However, FFT_FinalStage has to operate on data that does not all fit in cache simulta-
neously, and thus we may want to implement it as a new variant of FFT4_Final that in-
cludes cache-control operations.

It was mentioned in section 6.4 that the data rearrangement needed for the final butter-
flies meshes nicely with the data rearrangement of the bit-reversal permutation. There is
an additional advantage in the out-of-cache FFT because the butterfly operations are
largely calculations and intraregister data movement, while the bit-reversal permutation is
largely memory reading and writing, so they can execute simultaneously.

7.7 Cache Operations
Previous sections show an FFT algorithm design that organizes the work in a way suit-
able for the cache architecture, primarily by arranging for data to be operated on in
groups small enough to fit in cache. The fact that the data can be read into cache, kept

 Construction of a High-Performance FFT

2.1, August 8, 2004 71

there, and written to memory in an efficient manner does not mean that the processor will
do so. We may need to direct the processor in these activities by using explicit cache op-
erations.

Because the usefulness of cache operations is partially dependent on L2 and memory bus
speeds and characteristics, this paper only lists potential performance enhancements from
cache operations that might exist and does not give a definitive design.

Also, L2 cache control on the Motorola PowerPC CPU7400 and some other AltiVec
processors is imperfect and does not provide all the operations we would desire.

In addition, the benefits of various operations will vary at different vector lengths. A
complete design for best performance at every length therefore requires tailoring cache
operations to each length.

7.7.1 Cache Operations
AltiVec processors offer a variety of cache operations. The details are beyond the scope
of this paper. The operations may be categorized:

• Load. Data is loaded into cache in advance of its use in a computation.
• Allocate. Blocks are created in cache with zero or undefined data without reading

from memory.
• Mark. Data is marked most- or least-recently-used to influence the processor’s

choice of blocks to remove from cache when bringing in new blocks.
• Store. Data is written from cache to memory (if it has been modified in cache).
• Remove. Data is removed from cache.

Cache operations will be discussed in these terms without addressing variants. For exam-
ple, the 7400 has separate methods to load data intended only for reading and to load data
intended for reading and writing. Another example is that there are instructions to store
data without removing it (dcbst), to store data and remove it (dcbf), and to remove data
without storing it (dcbi). In the former example, the choice is determined by the situation
and is obvious. In the latter case, the specific instruction used is an implementation de-
tail—the categories given above describe the operation sufficiently.

7.7.2 Allocate Buffer in Cache
The gathering step will copy data to a buffer in cache. Because the existing contents of
the buffer will be completely overwritten, there is no need to read them from memory.

On the Motorola PowerPC CPU 7400, quickly issuing store instructions that fill a cache
block results in the processor gathering all the stores together and writing the resulting
block to cache. (This store-gathering is unrelated to the data gathering of our FFT algo-
rithm.) If this does not occur, only part of a cache block is written. The remainder of the
block must come from memory, and so reads from memory are performed. For high per-
formance, these reads should be avoided.

Construction of a High-Performance FFT

72 2.1, August 8, 2004

On processors like the 7400, store-gathering usually provides the desired behavior. If it
does not (the program does not issue store instructions sufficiently quickly) or on other
processors, the buffer may be allocated in cache, to avoid reading it from memory. This
step can be done once before the first gather operation and need not be repeated if the
buffer is kept in cache.

7.7.3 Load Data Being Gathered
In step (1), when data is being gathered, it may be useful to load into cache parts of the
data array shortly before they are read. This may also be unnecessary as the copying is
limited by the rate at which data can be read from memory, and there is little other work
to do while waiting for data to arrive.

7.7.4 Remove Data After Gathering
After data has been read from the array and written to a buffer, the cache blocks with im-
ages of the array are not needed for calculations and can be discarded. One might think
these blocks will be needed again soon, when the scattering is done to copy the data from
the buffer back to the array. However:

• The blocks generally do not remain in cache, due to the cache set size problem,
which is the reason we are gathering data.

• There is no advantage in having the blocks in cache because when we write the
results, they can be written to memory without reading the existing contents (us-
ing either store-gathering or another means, depending on the processor).

• Keeping the blocks in cache may result in other data being cast out of cache, such
as parts of the buffer used early in the gathering or parts of the table of weights.

Thus, there may be an advantage to discarded the data after it is read, either by explicitly
removing it or by marking it least-recently-used.

7.7.5 Write Results Without Reading
When the first-stage results are copied from the buffer back to the array, the issue about
writing entire cache blocks exists. Again, store-gathering or another method should pre-
vent unnecessary reads.

7.7.6 Remove Data After Scattering
After results have been copied from the buffer back to the array, they will not be used
again in the first stage, so they could be removed from cache. However, they will be used
again in subsequent stages.

7.7.7 Remove Buffer
When the first stage is done, the buffer contains results from the last set of butterflies. If
we go on and do other work, the processor will eventually recognize that data in cache
has not been used and will select it for removal. To remove the data from cache, the
processor will write it to memory. We do not want that to occur. To avoid it, we could
remove the buffer.

 Construction of a High-Performance FFT

2.1, August 8, 2004 73

7.7.8 Penultimate Stage
The penultimate stage might benefit from loading the data of each group before it is used,
loading the weights used by each group of data before they are used, and either storing
and removing the data after each group is done or marking the data least-recently-used.

The weights could also be removed. However, some weights are used by more than one
group in the penultimate stage, so we would wish to remove only weights that will not be
used again, or perhaps to refrain from removing weights until the end of the stage.

7.7.9 Final Stage
The final stage is driven by a table of indices as is not readily amenable to cache opera-
tions. Because the table entries are non-sequential, it is not possible to usefully issue se-
quential load operations for the data in final stage. Some attempt could be made to read
the table ahead of loading the data and issue individual loads.

The weights are read sequentially, since the weight table is prepared to match the index
table, so weights could be loaded in advance.

After being used, results and weights could be removed from cache or marked least-
recently-used.

7.7.10 After the FFT
When the FFT is complete, the application using it will go on to other things, and the
FFT may be able to enhance performance by leaving the cache in a state useful to the ap-
plication. Because the last operation in the FFT is the non-sequential final pass with bit-
reversal, there is not a good description of what remains in cache.

If the memory bus in use performs sequential accesses more efficiently than non-
sequential accesses, it may be useful to ensure that cache is stored after completion of an
FFT on a long vector. Then, when the application goes on to other work, it may load data
sequentially and benefit from the faster execution of sequential accesses. If modified data
were left in cache by the FFT, the reading of new data would have to be interleaved with
the writing of FFT results, resulting in non-sequential accesses on the memory bus.

8 Reverse DFT
The reverse-DFT of a 2N-element vector H is the vector h:

 .20for
2

1

20

2 N

j
j

jk

Nk kHh
N

N <≤= ∑
<≤

−
1

Some algebra will show that the reverse-DFT is the inverse of the DFT, that the reverse-
DFT of the DFT of h is h.

The original DFT may be called the forward-DFT.

Construction of a High-Performance FFT

74 2.1, August 8, 2004

Aside from swapping H and h, the definition of the reverse-DFT differs from the defini-
tion of the DFT in two ways: The exponent is negated and all results are multiplied by
1/2N.

8.1 Conjugating Elements
Let V* denote the vector formed by exchanging the real and imaginary components of
each element of a vector V. That is, if Vk=a+bi, then V*

k=b+ai. Let DFT(V) denote the
DFT of a vector V. Then h=(DFT(1/2N · H*)*. In other words, we can perform a reverse
DFT by exchanging the real and imaginary components of a vector H, multiplying the re-
sult by 1/2N, taking the DFT, and exchanging the real and imaginary components again.

To see that this is so, observe that () ()biaibiaiaib +=−=+ , where bia + denotes the
complex conjugate of a+bi. That is, swapping the real and imaginary components is
equivalent to conjugating and multiplying by i. Then (DFT(1/2N · H*)* is:

 Hii

N2

1
DFT .

Element k of this vector is:

 ∑∑∑
<≤<≤<≤

==
N

N

N

N

N

N

j
jN

jk

j
jN

jk

j
jN

jk

HiiHiiHii
20

2

20

2

20

2

2

1

2

1

2

1
111

 () () ∑∑∑
<≤

−

<≤

−

<≤

−
=−=−=

N

N

N

N

N

N

j
j

jk

N
j

j

jk

N
j

jN

jk

HHiiHii
20

2

20

2

20

2

2

1

2

1

2

1
111 .

Thus element k of (DFT(1/2N · H*)* is indeed element k of the reverse-DFT of H. Thus,
we can compute a reverse-DFT using a DFT if we implement two additional things: ex-
changing the real and imaginary components before and after the DFT and multiplying
by 1/2N.

If arrays of complex numbers are implemented with two pointers to arrays, one for the
real components and one for the imaginary components, then exchanging the components
in each element of H is implemented simply by exchanging the two pointers.

If arrays of complex numbers are implemented as arrays of pairs of real and imaginary
components, then the data must actually be exchanged before and after the DFT. This
need not involve any additional work. An alternate version of FFT4_0Weights or
FFT8_0_Weights can exchange the components as it loads them, and an alternate version
of FFT4_Final can exchange the components as it stores them.

The former is used in the demonstration code. The latter is easily implemented, although
it requires duplicate some amount of code.

 Construction of a High-Performance FFT

2.1, August 8, 2004 75

8.2 Scaling in the Butterfly Routines
This leaves the matter of multiplying the data by 1/2N. Our choices for this are quite
flexible. The DFT is linear, so the multiplications can be inserted before or after the DFT
with the same results. The multiplications can even be inserted inside the FFT computa-
tion if done in a consistent manner.

Consider this variant of FFT4_0Weights :

FFT4_0WeightsScale
static void FFT4_0WeightsScale(
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int c0, // Coefficient for k0.
 float scale // Scale for reverse transform.
)
{
 // Coefficient for k1 is coefficient for k0 divided by 1<<m.
 const int c1 = c0 >> 2;
 int k2;
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,
 c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,
 d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;

 for (k2 = 0; k2 < c1; ++k2)
 {
 a0r = vIn.re[c1*0 + k2] * scale;
 a0i = vIn.im[c1*0 + k2] * scale;
 a1r = vIn.re[c1*1 + k2];
 a1i = vIn.im[c1*1 + k2];
 a2r = vIn.re[c1*2 + k2];
 a2i = vIn.im[c1*2 + k2];
 a3r = vIn.re[c1*3 + k2];
 a3i = vIn.im[c1*3 + k2];
 c0r = + a2r * scale + a0r;
 c0i = + a2i * scale + a0i;
 c2r = - a2r * scale + a0r;
 c2i = - a2i * scale + a0i;
 c1r = + a3r + a1r;
 c1i = + a3i + a1i;
 c3r = - a3r + a1r;
 c3i = - a3i + a1i;
 d0r = + c1r * scale + c0r;
 d0i = + c1i * scale + c0i;
 d1r = - c1r * scale + c0r;
 d1i = - c1i * scale + c0i;
 d2r = - c3i * scale + c2r;
 d2i = + c3r * scale + c2i;
 d3r = + c3i * scale + c2r;
 d3i = - c3r * scale + c2i;
 vOut.re[c1*0 + k2] = d0r;
 vOut.im[c1*0 + k2] = d0i;
 vOut.re[c1*1 + k2] = d1r;
 vOut.im[c1*1 + k2] = d1i;
 vOut.re[c1*2 + k2] = d2r;

Construction of a High-Performance FFT

76 2.1, August 8, 2004

 vOut.im[c1*2 + k2] = d2i;
 vOut.re[c1*3 + k2] = d3r;
 vOut.im[c1*3 + k2] = d3i;
 }
}

The intent in this routine is that the caller will pass 1/2N in scale , and the routine will
produce results as if all the input data were multiplied by scale . This could be accom-
plished simply by multiplying each input number by scale . However, the above code
takes advantage of the availability of a fused multiply-add instruction that will perform a
multiplication and an addition in the same time as an add. All but two of the multiplica-
tions have been incorporated into existing additions.

Notice that a0r and a0i are multiplied by scale , yielding scaled results. Then, wherever
FFT4_0Weights originally added an unscaled number to a scaled number,
FFT4_0WeightsScale multiplies the unscaled number by scale as it adds it to the scaled
number, yielding a consistent scaled result. By the end of the routine, all results are prop-
erly scaled.

Similar changes can be made to FFT8_0Weights to produce FFT8_0WeightsScale .
FFT8_0Weights already includes multiplications, by a symbol named sqrt2d2 , but the
contents of that symbol can be multiplied by scale to get the desired result, as shown
here:

FFT8_0WeightsScale
static void FFT8_0WeightsScale(
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int c0, // Coefficient for k0.
 float scale // Scale for reverse transform.
)
{
 // Prepare a constant, sqrt(2)/2, with the scaling incorporated.
 const float sqrt2d2 = .7071067811865475244 * scale;
 // Coefficient for k1 is coefficient for k0 divided by 1<<m.
 const int c1 = c0 >> 3;
 int k2;
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,
 a4r, a4i, a5r, a5i, a6r, a6i, a7r, a7i,
 b0r, b0i, b1r, b1i, b2r, b2i, b3r, b3i,
 b4r, b4i, b5r, b5i, b6r, b6i, b7r, b7i,
 c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,
 c4r, c4i, c5r, c5i, c6r, c6i, c7r, c7i,
 d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i,
 d4r, d4i, d5r, d5i, d6r, d6i, d7r, d7i,
 t5r, t5i, t7r, t7i;

 for (k2 = 0; k2 < c1; ++k2)
 {
 a0r = vIn.re[c1*0 + k2] * scale;
 a0i = vIn.im[c1*0 + k2] * scale;
 a1r = vIn.re[c1*1 + k2];

 Construction of a High-Performance FFT

2.1, August 8, 2004 77

 a1i = vIn.im[c1*1 + k2];
 a2r = vIn.re[c1*2 + k2];
 a2i = vIn.im[c1*2 + k2];
 a3r = vIn.re[c1*3 + k2];
 a3i = vIn.im[c1*3 + k2];
 a4r = vIn.re[c1*4 + k2];
 a4i = vIn.im[c1*4 + k2];
 a5r = vIn.re[c1*5 + k2];
 a5i = vIn.im[c1*5 + k2];
 a6r = vIn.re[c1*6 + k2];
 a6i = vIn.im[c1*6 + k2];
 a7r = vIn.re[c1*7 + k2];
 a7i = vIn.im[c1*7 + k2];
 b0r = a0r + a4r * scale; // w = 1.
 b0i = a0i + a4i * scale;
 b1r = a1r + a5r;
 b1i = a1i + a5i;
 b2r = a2r + a6r;
 b2i = a2i + a6i;
 b3r = a3r + a7r;
 b3i = a3i + a7i;
 b4r = a0r - a4r * scale;
 b4i = a0i - a4i * scale;
 b5r = a1r - a5r;
 b5i = a1i - a5i;
 b6r = a2r - a6r;
 b6i = a2i - a6i;
 b7r = a3r - a7r;
 b7i = a3i - a7i;
 c0r = b0r + b2r * scale; // w = 1.
 c0i = b0i + b2i * scale;
 c1r = b1r + b3r;
 c1i = b1i + b3i;
 c2r = b0r - b2r * scale;
 c2i = b0i - b2i * scale;
 c3r = b1r - b3r;
 c3i = b1i - b3i;
 c4r = b4r - b6i * scale; // w = i.
 c4i = b4i + b6r * scale;
 c5r = b5r - b7i;
 c5i = b5i + b7r;
 c6r = b4r + b6i * scale;
 c6i = b4i - b6r * scale;
 c7r = b5r + b7i;
 c7i = b5i - b7r;
 t5r = c5r - c5i;
 t5i = c5r + c5i;
 t7r = c7r + c7i;
 t7i = c7r - c7i;
 d0r = c0r + c1r * scale; // w = 1.
 d0i = c0i + c1i * scale;
 d1r = c0r - c1r * scale;
 d1i = c0i - c1i * scale;
 d2r = c2r - c3i * scale; // w = i.
 d2i = c2i + c3r * scale;
 d3r = c2r + c3i * scale;
 d3i = c2i - c3r * scale;

Construction of a High-Performance FFT

78 2.1, August 8, 2004

 d4r = + t5r * sqrt2d2 + c4r; // w = sqrt(2)/2 * (+1+i).
 d4i = + t5i * sqrt2d2 + c4i;
 d5r = - t5r * sqrt2d2 + c4r;
 d5i = - t5i * sqrt2d2 + c4i;
 d6r = - t7r * sqrt2d2 + c6r; // w = sqrt(2)/2 * (- 1+i).
 d6i = + t7i * sqrt2d2 + c6i;
 d7r = + t7r * sqrt2d2 + c6r;
 d7i = - t7i * sqrt2d2 + c6i;
 vOut.re[c1*0 + k2] = d0r;
 vOut.im[c1*0 + k2] = d0i;
 vOut.re[c1*1 + k2] = d1r;
 vOut.im[c1*1 + k2] = d1i;
 vOut.re[c1*2 + k2] = d2r;
 vOut.im[c1*2 + k2] = d2i;
 vOut.re[c1*3 + k2] = d3r;
 vOut.im[c1*3 + k2] = d3i;
 vOut.re[c1*4 + k2] = d4r;
 vOut.im[c1*4 + k2] = d4i;
 vOut.re[c1*5 + k2] = d5r;
 vOut.im[c1*5 + k2] = d5i;
 vOut.re[c1*6 + k2] = d6r;
 vOut.im[c1*6 + k2] = d6i;
 vOut.re[c1*7 + k2] = d7r;
 vOut.im[c1*7 + k2] = d7i;
 }
}

FFT4_0WeightsScale executes two more multiplications than FFT4_0Weights . These
are necessary with this implementation of the reverse-DFT. For highest performance with
the DFT, an implementation might either use FFT4_0Weights or implement
FFT4_0WeightsScale in assembly language in a way that allows it to avoid the addi-
tional time for the unnecessary multiplications when doing a DFT. The same is true of
FFT8_0WeightsScale .

8.3 Changing the Kernels
Having created these variants, it is necessary to use them. The kernel changes one last
time:

FFT Kernel with Scaling for Reverse Transform
static void FFT_Kernel(
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int N, // N.
 int direction, // Transform direction.
 const CommonWeight *weights, // Common weight values.
 const FinalIndices *finalIndices,// Index pairs.
 const FinalWeights *finalWeights // Final weight va lues.
)
{
 const float scale = direction == - 1 ? 1./(1<<N) : 1.;

 int n, nLower, k0;

 Construction of a High-Performance FFT

2.1, August 8, 2004 79

 if (N & 1)
 FFT8_0WeightsScale(vOut, vIn, 1<<N, scale);
 else
 FFT4_0WeightsScale(vOut, vIn, 1<<N, scale);

 nLower = N&1 ? 3 : 2;
 for (n = nLower; n < N - 4 ; n +=2)
 FFT4_0Weights(vOut, vOut, 1<<N - n);

 for (k0 = 1 ; nLower < N - 4 ; nLower += 2)
 for (; k0 < 1<<nLower; ++k0)
 for (n = nLower; n < N - 4 ; n += 2)
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);

 if (n < N - 2)
 FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);

 FFT4_Final(vOut, 1<<N - 2, finalIndices, finalWeights);
}

FFT_MultipleStages also changes:

Multiple -Stage Kernel with Scaling for Reverse Transform
static void FFT_MultipleStages(
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int N, // N.
 int direction, // Transform direction.
 const CommonWeight *weights, // Common weight values.
 const FinalIndices *finalIndices,// Index pairs.
 const FinalWeights *finalWeights // Final weight va lues.
)
{
 const float scale = direction == - 1 ? 1./(1<<N) : 1.;

 int m0 = N&1 ? 9 : 8;

 FFT_FirstStage(m0, vOut, vIn, 1<<N, scale, weights) ;

 if (0 < N -2- m0)
 FFT_PenultimateStage(vOut, m0, N, weights);

 FFT_FinalStage(vOut, 1<<N - 2, finalIndices, finalWeights);
}

The auxiliary routine FFT_FirstStage must pass scale along:

FFT_FirstStage with Scaling for Reverse Transform
static void FFT_FirstStage(
 int m, // log2 of butterfly radix.
 ComplexArray vOut, // Address of output vector.
 ComplexArray vIn, // Address of input vector.
 int c0, // Coefficient for c0.
 float scale, // Scale for reverse transform.
 const CommonWeight weights[] // Array of weight values.

Construction of a High-Performance FFT

80 2.1, August 8, 2004

)
{
 // Coefficient for k1 is coefficient for c0 divided by 1<<m.
 const int c1 = c0 >> m;
 const int u1 = 1<<m;

 // Cluster size is how many sets fit in buffer at o ne time.
 const int cluster = b >> m;

 int n, nLower, k0, k2;

 // Process values of k2 in clusters.
 for (k2 = 0; k2 < c1; k2 += cluster)
 {
 Gather(buffer, vIn, u1, c1, k2, cluster);

 if (m & 1)
 FFT8_0WeightsScale(buffer, buffer, b, scale);
 else
 FFT4_0WeightsScale(buffer, buffer, b, scale);

 nLower = m&1 ? 3 : 2;
 for (n = nLower; n < m ; n += 2)
 FFT4_0Weights(buffer, buffer, b>>n);

 for (k0 = 1 ; nLower < m ; nLower += 2)
 for (; k0 < 1<<nLower; ++k0)
 for (n = nLower; n < m ; n += 2)
 FFT4_1WeightPerCall(buffer, k0, b>>n, weights[k0]);

 Scatter(vOut, buffer, u1, c1, k2, cluster);
 }
}

8.4 Alternatives
Butterfly routines other than FFT4_0Weights or FFT8_0Weights could be chosen for per-
forming the scaling multiplications. A significant disadvantage of using any other routine
is that all other routines include multiplications by weights and cannot incorporate the
scaling multiplications without extra computations unless the scale is incorporated into
the weights. This would require separate tables of weights for the forward-DFT and the
reverse-DFT. If that is acceptable, then FFT4_Final may be another good candidate for
the scaling multiplications because:

� It is used in only one pass (and we do not want to scale the data more than once).
� It uses separate weights (so only the final weights have to be doubled for the forward-

and reverse-DFT, not the common weights).
� Its implementation might have some compute time available for additional multiplica-

tions, since the routine is burdened with loads, stores, and permutations of elements.

When performing the DFT with the in-cache kernel, the data of the vector being trans-
formed is loaded only in the butterfly routines. Adding more loads of the data would hurt
performance, so the scaling for the reverse-DFT must be incorporated into one of the but-

 Construction of a High-Performance FFT

2.1, August 8, 2004 81

terfly routines. In the multiple-stage kernel, the data is also loaded in the Gather and
Scatter routines. Since these routines are memory copy operations and are free of com-
putations, they may be able to do the scaling multiplications with little or no extra time
consumed. This possibility is not examined further in this paper.

9 Executing the FFT
All the parts that will execute the FFT have been designed. Now we need to call those
parts, to design one central routine that will execute the entire FFT. This requires obtain-
ing the constants that the FFT will use, choosing the single-stage in-cache FFT_Kernel or
the out-of-cache FFT_MultipleStages , and executing the chosen routine.

9.1 Constants
To manage the constants, we use a structure that holds pointers to each of the types we
need:

ConstantsSet
typedef struct {
 const CommonWeight *commonWeights;
 const FinalWeights *finalWeights;
 const FinalIndices *finalIndices;
} ConstantsSet;

Before calling FFT_Kernel or FFT_MultipleStages , the FFT needs to get the constants.
We will use a routine named GetConstants to manage the tables. This routine will:

• Allocate space for and generate any tables of constants needed.
• Keep tables for future use.
• Return existing tables when available rather than generating them again.
• Keep one table of common weights for all lengths up to the longest requested

length.
• Keep one table of indices and one table of final weights for each requested length.

For the common weights, a pointer to the existing table is kept in CommonWeights , and
the longest vector length supported by that table is kept in CommonLength. Given a re-
quested to provide a table for a vector of length length , we compare it to CommonLength
to see if the existing table is long enough. If it is not, we generate a new table. Then the
table is returned in the structure of table pointers (or 1 is returned to indicate an error):

if (CommonLength < length)
 if (GenerateCommonWeights(&CommonWeights, &CommonLe ngth,
 length) != 0)
 return 1;
set - >commonWeights = CommonWeights;

For final pass indices, a separate table is needed for each supported vector length. So an
array of pointers is kept in FinalIndices , and a method is needed to select an element in

Construction of a High-Performance FFT

82 2.1, August 8, 2004

the table based on the vector length. The precise method is unimportant, and this state-
ment suffices to provide an element index given a vector length:

const int hash = ilog2(length);

Having selected an element in the array, we check it to see if there is already a table of
indices for this vector length. If there is not, we generate one. Then the pointer to the ta-
ble is returned in the structure pointers:

if (FinalIndices[hash] == NULL)
 if (GenerateFinalIndices(&FinalIndices[hash], lengt h) != 0)
 return 1;
set - >finalIndices = FinalIndices[hash];

The preparation of the table of final-pass weights is similar. The complete routine is
shown below. d is passed as a parameter but not used. This allows for the possibility that
scaling for the reverse-DFT could be incorporated into the tables of weights in a modified
design, and GetConstants would need to return different tables for different values of d.

GetConstants
static int GetConstants(
 ConstantsSet *set, // Structure in which to return pointers.
 int length, // Length of vector to be transformed.
 int d // Direction of transform.
)
{
 static CommonWeight *CommonWeights = NULL;
 static int CommonLength = 0;
 static FinalWeights *FinalWeights[32] = { NULL };
 static FinalIndices *FinalIndices[32] = { NULL };

 const int hash = ilog2(length);

 if (CommonLength < length)
 if (GenerateCommonWeights(&CommonWeights, &CommonLe ngth,
 length) != 0)
 return 1;
 set - >commonWeights = CommonWeights;

 if (FinalIndices[hash] == NULL)
 if (GenerateFinalIndices(&FinalIndices[hash], lengt h) != 0)
 return 1;
 set - >finalIndices = FinalIndices[hash];

 if (FinalWeights[hash] == NULL)
 if (GenerateFinalWeights(&FinalWeights[hash], lengt h,
 FinalIndices[hash]) != 0)
 return 1;
 set - >finalWeights = FinalWeights[hash];

 return 0;
}

 Construction of a High-Performance FFT

2.1, August 8, 2004 83

9.2 FFT Routine
Finally we can write our main FFT routine:

FFT
int FFT(
 float *re, // Address of real components.
 float *im, // Address of imaginary components.
 int N, // Base - two logarithm of length of vector.
 int d // Direction of transform.
)
{
 ConstantsSet constants;
 ComplexArray v(re, im);

 /* To perform a transform in the reverse direction, first
 swap the real and imaginary components. Scaling wi ll be
 done later.
 */
 if (d < 0)
 v = ComplexArray(im, re);

 // This FFT does not support N < 4.
 if (N < 4)
 return 1;

 /* This FFT does not support long vectors that over flow the
 field size in the indices.
 */
 if (CHAR_BIT * sizeof constants.finalIndices - >read + 4 < N)
 return 1;

 / / Get the constants.
 if (0 != GetConstants(&constants, 1<<N, d))
 return 1;

 // If n is small, do the single - stage FFT.
 if (1<<N < 32768 / (sizeof *re + sizeof *im))
 FFT_Kernel(v, v, N, d, constants.commonWeights,
 constants.finalIndices, constants.finalWeights);

 // If n is large, do the multiple - stage FFT.
 else
 FFT_MultipleStages(v, v, N, d, constants.commonWeig hts,
 constants.finalIndices, constants.finalWeights);

 return 0;
}

A Generating Radix-8 Butterfly with Maple
The following Maple (version 7.00) code generates the assignment statements used in the
weightless radix-8 butterfly (section 4.3.3), except that the use of t5r , t5i , t7r , and t7i
was added manually to eliminate common subexpressions.

Construction of a High-Performance FFT

84 2.1, August 8, 2004

one(x) is a convenient notation for e2 π i x.
> one := x -> exp(2*Pi*I*x):

r(n) gives the number obtained by writing n in binary and rotating its bits around the bi-
nary point.
> r := proc(n) option remember;
 if n=0 then 0 else (irem(n,2)+r(iquo(n,2)))/2 fi end:

vp(N, n, m, k) gives the kth element of vn+m as an expression of elements in vn.
E.g., for a 1024-element FFT, v(10, 3, 0, 4) gives element four of the third pass in
terms of original (pass zero) input elements, and v(10, 2, 1, 4) gives element four of
the third pass (2+1) in terms of elements in pass 2.
> vp := proc(N, n, m, k)
 local k0, k1, k2, j1;

Separate k into bit fields of length n, m, and N-n-m.
 k0 := iquo(k, 2^(N-n));
 k1 := iquo(irem(k, 2^(N-n)), 2^(N-n-m));
 k2 := irem(k, 2^(N-n-m));
Write vn+m,k as a sum of elements in vn.
 v[n+m, k] = sum(
 one(j1*r(k1)) * one(r(2^m*k0)) ^ j1
 * v[n, 2^(N-n)*k0 + 2^(N-n-m)*j1 + k2],
 j1=0 .. 2^m-1);
end:

ExpandParts converts each reference to an element vn,k into real and imaginary parts
with new names. The name takes the form <letter><number><part> , where:
<letter> is derived from n: 0 becomes a, 1 becomes b, etc.
<number> is the value of k.
<part> is “r ” or “ i ” for real or imaginary.
For example, v[2, 4] is converted to b4r + I*b4i .
> ExpandParts := proc(e)
Apply the procedure x-> … to each occurrence of v[integer, anything] in the expres-
sion e.
 subsindets(e, v[integer, anything],
x-> … applies y-> … to the ̀r` and the ̀i` in ̀ r`+I*`i` .
 x -> subsindets(`r`+I*`i`, symbol,
y-> … concatenates a null string (to ensure string type), a letter derived from the first sub-
script of x , the value of the second subscript of x , and the name in y (which is ̀r` or
`i`).
 y -> cat(``, StringTools[Char](97+op(1, x)),
 op(2, x), y)
)
);
end:

 Construction of a High-Performance FFT

2.1, August 8, 2004 85

ExpandPartsCompound separates, expands, and simplifies the real and imaginary parts of
a list of equations.
ExpandParts is applied to the list, and then each object in the list is replaced with two
objects, one for its real components and one for its imaginary components.
Since each object in the list is expected to be an equation, and Re and Im cannot be ap-
plied to equations, map is used to apply Re and Im to the parts of the object.
> ExpandPartsCompound := proc(l)
Third, simplify the expression to get the separate components.
 evalc(map(
Second, request the real and imaginary components.
 t -> (map(Re, t), map(Im, t)),
First, expand and rename the real and imaginary parts.
 ExpandParts(l)
)):
end:

Use vp to express each element k of each radix-2 pass n of a 23-element FFT in terms of
elements of the previous pass.
> t0 := subs(N=3, '[seq(seq(vp(N, n-1, 1, k), k=0..2^N-1),
 n=1..N)]'):

Print each equation “linearly,” suitable for cutting and pasting.
> map(lprint, ExpandPartsCompound(t0)):
b0r = a0r+a4r
b0i = a0i+a4i
b1r = a1r+a5r
b1i = a1i+a5i
b2r = a2r+a6r
b2i = a2i+a6i
b3r = a3r+a7r
b3i = a3i+a7i
b4r = a0r - a4r
b4i = a0i - a4i
b5r = a1r - a5r
b5i = a1i - a5i
b6r = a2r - a6r
b6i = a2i - a6i
b7r = a3r - a7r
b7i = a3i - a7i
c0r = b0r+b2r
c0i = b0i+b2i
c1r = b1r+b3r
c1i = b1i+b3i
c2r = b0r - b2r
c2i = b0i - b2i
c3r = b1r - b3r
c3i = b1i - b3i
c4r = b4r - b6i
c4i = b4i+b6r
c5r = b5r - b7i

Construction of a High-Performance FFT

86 2.1, August 8, 2004

c5i = b5i+b7r
c6r = b4r+b6i
c6i = b4i - b6r
c7r = b5r+b7i
c7i = b5i - b7r
d0r = c0r+c1r
d0i = c0i+c1i
d1r = c0r - c1r
d1i = c0i - c1i
d2r = c2r - c3i
d2i = c2i+c3r
d3r = c2r+c3i
d3i = c2i - c3r
d4r = c4r+1/2*2^(1/2)*c5r - 1/2*2^(1/2)*c5i
d4i = c4i+1/2*2^(1/2)*c5i+1/2*2^(1/2)*c5r
d5r = c4r - 1/2*2^(1/2)*c5r+1/2*2^(1/2)*c5i
d5i = c4i - 1/2*2^(1/2)*c5i - 1/2*2^(1/2)*c5r
d6r = c6r - 1/2*2^(1/2)*c7r - 1/2*2^(1/2)*c7i
d6i = c6i - 1/2*2^(1/2)*c7i+1/2*2^(1/2)*c7r
d7r = c6r+1/2*2^(1/2)*c7r+1/2*2^(1/2)*c7i
d7i = c6i+1/2*2^(1/2)*c7i - 1/2*2^(1/2)*c7r

B Notes About C Source Code

B.1 Indentation
Because there is a limited width available to display code in this paper, I contract some of
normal indenting when showing loops or conditional statements. For example, code that
is more usually written:

for (k0 = l0; k0 < u0; ++k0)
 for (k1 = l1; k1 < u1; ++k1)
 for (k2 = l2; k2 < u2; ++k2)
 function(k0, k1, k2);

may instead be written:

for (k0 = l0; k0 < u0; ++k0)
for (k1 = l1; k1 < u1; ++k1)
for (k2 = l2; k2 < u2; ++k2)
 function(k0, k1, k2);

I hope the reader will not find this confusing. The latter set of loops might be thought of
as one three-dimensional loop instead of three one-dimensional loops.

B.2 Complex Number Representation
The code displays use a type complex that is not defined in this paper but implements
normal complex arithmetic.

C++ implementations of complex and ComplexArray are given in the demonstration
code that supplements this paper. These implementations provide convenience features

 Construction of a High-Performance FFT

2.1, August 8, 2004 87

that make the demonstration code appear simple but would be atrocious to implement in a
real application. Those features solely illustrate the design, particularly the intermediate
stages of development. None of them are needed in a final implementation.

B.3 Memory Allocation and Alignment
The routines for generating weights are shown using realloc to allocate memory. In an
AltiVec implementation, these arrays should be aligned to multiples of 16 bytes, and so
an allocation routine that guarantees this should be used, such as the vec_realloc de-
scribed in Motorola’s AltiVec: The Programming Interface Manual.

B.4 Bit -Reversed Bytes
This code generates the table of bit-reversed bytes in routine rw in section 5.2:

Generate Bit-Reversed Bytes for rw
#include <stdio.h>

static int rw(int i) {
 int r, t;
 for (r = t = 0; t < 8; ++t, i>>=1)
 r = r << 1 | i & 1;
 return r;
}

int main(void) {
 int i;
 for (i = 0; i < 256; ++i)
 printf("%3d,%c", rw(i), i % 16 == 15 ? ' \ n' : ' ');
 return 0;
}

