
Construction of a HighConstruction of a HighConstruction of a HighConstruction of a High----Performance FFTPerformance FFTPerformance FFTPerformance FFT    
Mathematics, Design, and Implementation Guide 

Author:  Eric Postpischil (http://edp.org) 
Version: 2.1 
Date: August 8, 2004 
 
The FFT algorithm for computing the DFT is well known and provides an O(n log n)-
time implementation of the DFT. However, constructing a high-performance FFT imple-
mentation that executes at the best possible speed requires careful and efficient organiza-
tion. 
 
This paper describes the mathematical composition of an FFT, some overall design con-
siderations for implementing high-performance FFTs, and specific considerations for im-
plementing a high-performance FFT on an AltiVec processor. 
 
Version Date Changes 
2.0 August 25, 2003 First public release. 
2.1 August 8, 2004 More rigorous definition of r. Minor edits. 
 
© 2003-2004 by Eric Postpischil, http://edp.org, edp@edp.org . 



Construction of a High-Performance FFT 

ii   2.1, August 8, 2004 

ContentsContentsContentsContents    
1 INTRODUCTION...................................................................................................................... 1 

1.1 WHAT IS AN FFT?.................................................................................................................. 1 
1.2 WHAT ARE WE GOING TO DO?............................................................................................. 1 
1.3 TARGET ARCHITECTURE........................................................................................................ 2 
1.4 TARGET PROCESSOR.............................................................................................................. 3 
1.5 INTRODUCTORY NOTES.......................................................................................................... 3 

1.5.1 Source Code Notation and Mathematical Notation....................................................... 3 
1.5.2 Complex Number Representation .................................................................................. 3 
1.5.3 Miscellaneous ................................................................................................................ 4 
1.5.4 Bit-Reversal Permutation............................................................................................... 4 

2 MATHEMATICAL COMPOSITION OF AN FFT............................................................... 4 

2.1 DEFINITIONS .......................................................................................................................... 4 
2.1.1 Domains ......................................................................................................................... 4 
2.1.2 Notation.......................................................................................................................... 5 
2.1.3 Roots of 1 ....................................................................................................................... 5 
2.1.4 Discrete Fourier Transform (DFT) ............................................................................... 5 
2.1.5 Bit-Reversal Function, r(k) ............................................................................................ 5 

2.2 1X
 WITH R(K)........................................................................................................................... 6 

2.3 INTRODUCTION TO THE FFT PROCEDURE.............................................................................. 7 
2.4 PROOF OF THE FFT PROCEDURE............................................................................................ 8 
2.5 CONCLUSIONS........................................................................................................................ 9 

3 INITIAL DESIGN ................................................................................................................... 10 

3.1 STARTING THE FFT KERNEL................................................................................................ 10 
3.1.1 Implement C Code From the Mathematics .................................................................. 10 
3.1.2 Group Butterfly Calculations Together ....................................................................... 10 
3.1.3 Create a Butterfly Subroutine ...................................................................................... 11 

3.2 STRUCTURING THE FFT ....................................................................................................... 12 
3.2.1 General ........................................................................................................................ 12 
3.2.2 First Pass ..................................................................................................................... 13 
3.2.3 Summary ...................................................................................................................... 13 

3.3 PREPARING THE KERNEL...................................................................................................... 13 
3.3.1 Separate the First Pass ................................................................................................ 13 
3.3.2 Eliminate Fictitious Mathematical Vectors ................................................................. 14 
3.3.3 Specialize Values for the First Pass............................................................................. 14 
3.3.4 Discuss the Last Two Passes........................................................................................ 15 
3.3.5 Separate the Last Two Passes...................................................................................... 15 
3.3.6 Use Butterfly Specializations ....................................................................................... 17 

4 DESIGNING BUTTERFLY RO UTINES ............................................................................. 18 

4.1 PREPARED CONSTANTS........................................................................................................ 18 
4.1.1 Internal Weights Are Built into Routine....................................................................... 18 



 Construction of a High-Performance FFT 

2.1, August 8, 2004  iii  

4.1.2 External Weights Are Stored in An Array.................................................................... 19 
4.1.3 Common Weights ......................................................................................................... 19 

4.2 GENERAL RADIX -4 BUTTERFLY ALGORITHM ...................................................................... 19 
4.2.1 Goedecker’s Algorithm ................................................................................................ 19 
4.2.2 Division by Zero........................................................................................................... 21 

4.3 BUTTERFLY ROUTINES......................................................................................................... 21 
4.3.1 FFT4_1WeightPerCall ................................................................................................ 21 
4.3.2 FFT4_0Weights............................................................................................................ 23 
4.3.3 FFT8_0Weights............................................................................................................ 24 
4.3.4 FFT4_1WeightPerIteration ......................................................................................... 26 
4.3.5 FFT4_Final.................................................................................................................. 28 

5 GENERATING WEIGHTS.................................................................................................... 30 

5.1 PREREQUISITES.................................................................................................................... 31 
5.2 SUBROUTINES...................................................................................................................... 31 
5.3 GENERATE COMMON WEIGHTS ........................................................................................... 32 

6 MORE KERNEL CHANGES ................................................................................................ 33 

6.1 GROUP BUTTERFLIES BY WEIGHT........................................................................................ 34 
6.1.1 Calculate New Loop Bounds........................................................................................ 34 
6.1.2 Check the New Calculation Order............................................................................... 35 
6.1.3 Optimize the Code........................................................................................................ 35 

6.2 SEPARATE THE WEIGHTLESS BUTTERFLIES.......................................................................... 35 
6.2.1 Create A Variant of FFT4_0Weights........................................................................... 36 

6.3 UPDATE THE KERNEL........................................................................................................... 36 
6.4 INCORPORATE BIT-REVERSAL PERMUTATION ..................................................................... 38 

6.4.1 Read Groups of Elements and Write in Bit-Reversed Locations ................................. 38 
6.4.2 Problems ...................................................................................................................... 38 
6.4.3 Terminology ................................................................................................................. 38 
6.4.4 Solution ........................................................................................................................ 39 
6.4.5 Index Table Implementation ........................................................................................ 41 
6.4.6 C Implementation......................................................................................................... 42 
6.4.7 AltiVec Implementation................................................................................................ 45 
6.4.8 Generate Final Weights ............................................................................................... 48 
6.4.9 Update Kernel.............................................................................................................. 49 

6.5 FFT KERNEL ROUTINE ........................................................................................................ 50 

7 OUT-OF-CACHE PERFORMANCE.................................................................................... 51 

7.1 INTRODUCTION.................................................................................................................... 51 
7.1.1 Motorola PowerPC CPU 7400 Cache Architecture.................................................... 51 
7.1.2 Cache Problems........................................................................................................... 52 

7.2 THE CACHE SIZE PROBLEM.................................................................................................. 52 
7.3 THE CACHE SET SIZE PROBLEM........................................................................................... 52 
7.4 THE CACHE BLOCK SIZE PROBLEM...................................................................................... 54 
7.5 STRUCTURING THE MULTIPLE-STAGE FFT .......................................................................... 57 

7.5.1 Summary ...................................................................................................................... 58 
7.5.2 PowerPC CPU 7400 Design........................................................................................ 58 



Construction of a High-Performance FFT 

iv  2.1, August 8, 2004 

7.6 STAGE DESIGNS................................................................................................................... 59 
7.6.1 First Stage.................................................................................................................... 60 
7.6.2 General Stages ............................................................................................................. 65 
7.6.3 Penultimate Stage ........................................................................................................ 65 
7.6.4 Final Stage................................................................................................................... 70 

7.7 CACHE OPERATIONS............................................................................................................ 70 
7.7.1 Cache Operations ........................................................................................................ 71 
7.7.2 Allocate Buffer in Cache.............................................................................................. 71 
7.7.3 Load Data Being Gathered.......................................................................................... 72 
7.7.4 Remove Data After Gathering ..................................................................................... 72 
7.7.5 Write Results Without Reading .................................................................................... 72 
7.7.6 Remove Data After Scattering ..................................................................................... 72 
7.7.7 Remove Buffer.............................................................................................................. 72 
7.7.8 Penultimate Stage ........................................................................................................ 73 
7.7.9 Final Stage................................................................................................................... 73 
7.7.10 After the FFT.............................................................................................................. 73 

8 REVERSE DFT........................................................................................................................ 73 

8.1 CONJUGATING ELEMENTS.................................................................................................... 74 
8.2 SCALING IN THE BUTTERFLY ROUTINES............................................................................... 75 
8.3 CHANGING THE KERNELS.................................................................................................... 78 
8.4 ALTERNATIVES .................................................................................................................... 80 

9 EXECUTING THE FFT ......................................................................................................... 81 

9.1 CONSTANTS......................................................................................................................... 81 
9.2 FFT ROUTINE ...................................................................................................................... 83 

A GENERATING RADIX -8 BUTTERFLY WITH MAPLE ................................................. 83 

B NOTES ABOUT C SOURCE CODE.................................................................................... 86 

B.1 INDENTATION ...................................................................................................................... 86 
B.2 COMPLEX NUMBER REPRESENTATION................................................................................ 86 
B.3 MEMORY ALLOCATION AND ALIGNMENT ........................................................................... 87 
B.4 BIT-REVERSED BYTES......................................................................................................... 87 



 Construction of a High-Performance FFT 

2.1, August 8, 2004  v 

Source Code DisplaysSource Code DisplaysSource Code DisplaysSource Code Displays    
FFT DIRECTLY FROM MATHEMATICS ........................................................................................... 10 
FFT_BUTTERFLIES........................................................................................................................ 11 
FIRST FFT KERNEL........................................................................................................................ 12 
EXPANDED FFT KERNEL............................................................................................................... 17 
FFT KERNEL USING SPECIALIZED BUTTERFLY ROUTINES............................................................. 18 
GOEDECKER’S ALGORITHM ........................................................................................................... 20 
FFT4_1WEIGHTPERCALL ............................................................................................................. 22 
FFT4_0WEIGHTS........................................................................................................................... 23 
FFT8_0WEIGHTS........................................................................................................................... 24 
FFT4_1WEIGHTPERITERATION..................................................................................................... 27 
FFT4_FINAL .................................................................................................................................. 29 
TWOPI............................................................................................................................................ 31 
COMMONWEIGHT .......................................................................................................................... 31 
ILOG2............................................................................................................................................. 31 
RW, REVERSE WORD...................................................................................................................... 31 
R, CALCULATE R(K)........................................................................................................................ 32 
GENERATECOMMONWEIGHTS....................................................................................................... 33 
FFT KERNEL WITH REORDERED LOOPS AND SEPARATED LOOP FOR K0=0..................................... 37 
FINAL INDICES................................................................................................................................ 41 
GENERATEFINAL INDICES............................................................................................................... 41 
CONSTRUCT................................................................................................................................... 42 
FFT4_FINAL WITH BIT-REVERSAL PERMUTATION ....................................................................... 42 
READELEMENTS ............................................................................................................................ 43 
WRITEREVERSEDELEMENTS.......................................................................................................... 44 
PERFORMBUTTERFLIES.................................................................................................................. 44 
ALTIVEC READELEMENTS, PART I ................................................................................................ 46 
ALTIVEC READELEMENTS, PART II............................................................................................... 46 
ALTIVEC WRITEREVERSEDELEMENTS .......................................................................................... 47 
ALTIVEC PERFORMBUTTERFLIES.................................................................................................. 47 
FINALWEIGHTS.............................................................................................................................. 48 
GENERATEFINALWEIGHTS ............................................................................................................ 49 
FFT KERNEL WITH FINAL INDICES AND WEIGHTS......................................................................... 50 
FFT KERNEL ROUTINE .................................................................................................................. 50 
CACHE-BLOCK CLUSTERING GENERATEFINAL INDICES................................................................. 55 
MULTIPLE-STAGE KERNEL ............................................................................................................ 60 
FFT_FIRSTSTAGE PROTOTYPE...................................................................................................... 60 
GATHER ......................................................................................................................................... 61 
SCATTER........................................................................................................................................ 61 
FIRST FFT_FIRSTSTAGE................................................................................................................ 61 
FFT_FIRSTSTAGE.......................................................................................................................... 64 
FFT_PENULTIMATESTAGEPROTOTYPE.......................................................................................... 65 
EARLY FFT_PENULTIMATESTAGE ................................................................................................ 67 
FFT4_1WEIGHTPERITERATIONB .................................................................................................. 68 



Construction of a High-Performance FFT 

vi  2.1, August 8, 2004 

FFT_PENULTIMATESTAGE ............................................................................................................ 69 
FFT_FINALSTAGE PROTOTYPE...................................................................................................... 70 
FFT_FINALSTAGE ......................................................................................................................... 70 
FFT4_0WEIGHTSSCALE ................................................................................................................ 75 
FFT8_0WEIGHTSSCALE ................................................................................................................ 76 
FFT KERNEL WITH SCALING FOR REVERSE TRANSFORM.............................................................. 78 
MULTIPLE-STAGE KERNEL WITH SCALING FOR REVERSE TRANSFORM......................................... 79 
FFT_FIRSTSTAGE WITH SCALING FOR REVERSE TRANSFORM....................................................... 79 
CONSTANTSSET ............................................................................................................................. 81 
GETCONSTANTS............................................................................................................................. 82 
FFT................................................................................................................................................ 83 
GENERATE BIT-REVERSED BYTES FOR RW.................................................................................... 87 



1 Introduction 

1.1 What Is an FFT?  
This paper is intended for the engineer who wants to design and implement an FFT or to 
understand an existing implementation. It helps if you already know what an FFT is. 
However, it is not essential. This paper is about how to compute an FFT, not how to use 
it, and the computations are laid out in detail. 
 
FFT stands for Fast Fourier Transform. It is an algorithm for performing a DFT. DFT 
stands for Discrete Fourier Transform. The DFT is a mathematical operation. You will 
find a definition for it in section 2.1.4. If you are unfamiliar with the DFT, you are proba-
bly a software engineer who has been asked to implement or maintain some FFT code for 
some signal processing applications. In that case, you can study the mathematics in this 
paper to understand the FFT structure or read any of the numerous books and web pages 
about the FFT, what it does, and how it is used. 
 
Strictly, the FFT is a specific algorithm for performing fast DFTs on vectors whose 
lengths are powers of two. “FFT” is also used to describe other algorithms for performing 
DFTs on vectors of other lengths. This paper addresses only vector lengths that are pow-
ers of two. The basic algorithm used in this paper is described in section 2.3. 

1.2 What Are We Going To Do?  
This paper shows you how to design and implement a high-performance FFT, particu-
larly on a computer processor with AltiVec technology. High-performance means execut-
ing an FFT not just in O(n log n) time but organizing the work for efficient execution so 
that an FFT can be performed in world-class time. The design illustrated in this docu-
ment, if implemented well, can perform an FFT on a 1024-element vector in less than 
9,400 CPU cycles on a Motorola PowerPC CPU 7400. 
 
Section 2 analyzes the mathematical structure of the DFT, shows an FFT procedure, and 
proves the FFT procedure computes the DFT. The mathematics is developed explicitly. 
The advantage of this, aside from knowing our algorithm is correct, is that it makes it eas-
ier for us to reason about the algorithm. The effect is that other decisions later on—How 
do we generate the weights?—are easier because we can write a simple formula that 
shows what must be calculated. Also, this assists in demonstrating that the FFT algorithm 
is largely composed of simple parts, albeit connected in some complicated ways. 
 
Section 3 converts the algorithm into simple C code and then shows how to reorganize 
the code for efficient execution. This method of showing how the code is developed is 
repeated in this paper for two reasons: 
 

• Showing the development provides a better understanding of the design than 
showing a completed work, particularly since some parts of the complete design 
are intricate. 
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• Laying out the decisions separately makes them easier to change for other circum-
stances, such as a different target architecture. 

 
Section 4 shows incremental design improvements and methods to implement them. 
 
Section 5 discusses generating constants needed by the FFT routines. 
 
Section 6 reorganizes the basic FFT loops for more efficient execution. 
 
Section 7 shows how to design an FFT for efficient performance on long vectors that do 
not fit completely in cache memory at one time. 
 
Section 8 adds support for the reverse DFT. 
 
Section 9 completes the FFT, showing code to call the subroutines of earlier sections. 

1.3 Target Architecture  
The overall design described in this paper is suitable for implementation on a variety of 
computer architectures, because features like simplifying code structure, reducing mem-
ory use, and eliminating unneeded calculations are generally beneficial regardless of 
computer architecture. At certain points, choices will be made specifically for the family 
of PowerPC processors (from IBM and Motorola) using AltiVec technology (from Mo-
torola). 
 
AltiVec technology has several features of interest in implementing a high-performance 
FFT. 
 
The floating-point instructions include a fused multiply-add operation that executes in the 
same time as a multiply or add operation. It is therefore advantageous to structure calcu-
lations to minimize multiply-add operations rather than merely minimizing multiply op-
erations. 
 
The architecture provides single-instruction multiple-data (SIMD) instructions that per-
form the same calculation on four sets of floating-point numbers at the same time. E.g., 
the calculation expressed by this C code: 
 

for (i = 0; i < 4; ++i)  
 d[i] = a[i] * b[i] + c[i]; 

 
can be computed by the single instruction “vmaddfp d, a, b, c ”, provided that the ar-
ray contents are in processor registers named a, b, c , and d. 
 
Along with this multiple-data capability come: 
 

• the ability to load and store data to and from memory in blocks and 
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• the restriction that memory access should be done on addresses with 16-byte 
alignment for best performance. 

 
These features affect our design decisions by giving us incentive to group data in blocks 
of four floating-point numbers. 

1.4 Target Processor  
In section 7, particular characteristics of the Motorola PowerPC CPU 7400 will be used 
to illustrate design choices and construct the FFT. Relevant information about this CPU is 
in section 7.1.1. 
 
The reader is expected to be familiar with cache operations, such as touches, streams, in-
validates, and flushes. 

1.5 Introductory Notes  

1.5.1 Source Code Notation and Mathematical Notatio n 
References to C and assembly language source code are marked with a fixed-width font, 
as in the assembly-language instruction vmaddfp  or the C expression 1<<N- n[p] . 
 
The usual mathematical notation is used extensively in section 2 and sporadically 
throughout this paper. At times it is necessary to mix these two notations, to refer to the 
mathematical value that a certain software entity has. Italics denote mathematical vari-
ables, such as n, and distinguish them from software entities, such as n. 

1.5.2 Complex Number Representation  
The representations of complex numbers and arrays of complex numbers are not made 
explicit in much of this paper. Many of design features and criteria discussed are not sen-
sitive to the choice of representations. 
 
Common arrangements for arrays of complex numbers are: 
 

• Have two arrays. One holds the real components of the complex numbers, and the 
other holds the imaginary components. This is called split or separated data. 

• Have one array in which each element is a structure containing two floating-point 
numbers, one the real component and the other the imaginary component. This is 
called interleaved data. 

 
In demonstration source code, the real or imaginary components of complex numbers are 
sometimes referred to in ways that, due to C semantics, suggest a certain representation. 
E.g., a reference to “v.re[k] ” implies v  is a structure containing a member re  (and likely 
another member im ) that is an array of floating-point numbers, thus suggesting separated 
data. Conversely, “v[k].re ” implies an array of structures, thus suggesting interleaved 
data. The reader should understand that usually either arrangement is acceptable, with 
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suitable changes in the source code, and I may switch back and forth between them to use 
the representation that is simpler in whatever feature is being discussed. 
 
In discussing the data being transformed, the term “element” refers to an entire complex 
element, either as a whole or as essentially parallel operations on its real and imaginary 
components. When the individual components are relevant, the real and imaginary com-
ponents are referred to explicitly. 

1.5.3 Miscellaneous  
“Low bit” and “low bits” refer to the least significant bits of a value. “High bit” and “high 
bits” refer to the most significant bits of a value. The values involved are typically bit 
fields smaller than whole processor registers or architectural words, so the most or least 
significant bits involved are those of the value and not necessarily of the whole word. 

1.5.4 Bit -Reversal Permutation  
It is well known that the FFT produces results in a permuted order, an order called a bit-
reversal permutation. This is defined formally in sections 2.1.5 and 2.3. An introduction 
here may also be useful. An array a' containing 2N elements is said to be the bit-reversal 
permutation of an array a also containing 2N elements if: 
 
 For each k and k' such that the N-bit binary notation for k (including lead-

ing zeroes) is the bit-by-bit reversal of the N-bit binary notation for k', 

kk aa ′′= . 

 
That is, each element ak is found in a' by reversing the bits in the index k. 
 
Note two properties of the bit-reversal: 
 

• The bit-reversal of a number is symmetric; the bit-reversal of the bit-reversal is 
the original number. The same is true of the entire permutation; the bit-reversal 
permutation of a bit-reversal permutation is the identity permutation. 

• The bit-reversal depends on N. For example, the bit-reversal of 11 considered as a 
4-bit number (10112) is 13 (11012). The bit-reversal of 11 considered as a 6-bit 
number (0010112) is 52 (1101002). 

2 Mathematical Composition of an FFT 

2.1 Definitions  

2.1.1 Domains  
The domain for variables used as indices is the set of nonnegative integers. This includes 
the variables j, j0, j1, k, k0, k1, k2, m, n, N, p, and q. That domain should be understood in 
the theorems below. Other variables are drawn from the set of complex numbers or are 
explicitly described. 
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The square root of -1 is denoted with i and not with j. 
 
Indices begin at zero. A vector with 2N elements has indices k satisfying Nk 20 <≤ . 

2.1.2 Notation  
Bold font indicates a vector: a. 
 
A subscript indicates an element of a vector: aj. 
 
Brackets indicate construction of a vector: 40

2 ][ <≤ jj  is a vector containing the elements 0, 

1, 4, and 9. 
 
If a has, for example, 2m elements, then a is identical to mjja

20
][

<≤
. 

2.1.3 Roots of 1  
For convenience, we define 1x to be e2 π i x. Note that 1p/q is one of the qth roots of 1. Spe-
cifically, it is the pth such root in the counterclockwise (+i) direction from the real axis. 
Thus, 10/4 = 1, 11/4 = i, 12/4 = -1, and 13/4 = -i. 
 
1x is cyclic with period 1, since, if k is an integer, 1k+x=e2 π i (k+x)=e2 π i ke2 π i x=1e2 π i x=1x. 
 

1-x is the complex conjugate of 1x, written x1 . 

2.1.4 Discrete Fourier Transform (DFT)  
The DFT of a 2N-element vector h is the vector H: 
 

 .20for  
20

2 N

j
j

jk

k khH
N

N <≤= ∑
<≤

1  

This is identical to the conventional definition that uses 
i

jk
N

e
π2

2  for the coefficient rather 

than 
N

jk

21 . 

2.1.5 Bit -Reversal Function, r(k) 
Given an integer k, let [bi] be the string of bits (0 or 1) such that ∑=

i

i
ibk 2 . Thus [bi] is 

the binary numeral for k. The sum may be taken over all integers i. Only finitely many 
bits will be non-zero, so the sum effectively has a finite number of terms although limits 
on i are not explicitly written. 
 
Define ( ) ∑ −−=

i

i
ibkr 12 . 

 
A description of r is: 
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 r(k) is the number obtained by writing the binary digits of k in reverse or-

der after a “.”. E.g., r(12) = r(11002) = .00112 = 3/16.  
 
The way r maps integers to fractions is convenient in the FFT, particularly since r is in-
dependent of the length of the vector being transformed. We will also multiply r(k) by 2m 
to produce an integer result: 
 
Lemma (1): If k<2m, 2mr(k) is the number obtained by writing k as an m-bit number in 

binary, including leading 0s, and reversing the digits (that is, exchanging 
the i th digit with the m-i-1th digit). 

 
Proof: 2mr(k) is ∑ ∑= −−−−

i i

im
i

i
i

m bb 11 222 . By substituting m-i-1 for i, we obtain 

∑ −−
i

i
imb 21 . 

 
Corollary (2): If k < 2m, then 2mr(k) is an integer. 
 
Lemma (3): If k1 < 2m, then r(2mk0 + k1) = r(k1)+r(2mk0). 
 
Proof: Let [b0,i] and [b1,i] be binary numerals for k0 and k1, respectively, and note that 
[b0,i-m] is the binary numeral for 2mk0. The binary numeral for 2mk0+k1 is [b0,i-m+b1,i] be-
cause b0,i-m+b1,i is always a binary digit; b0,i-m and b1,i are never both 1. (b1,i is 1 only for 
some i less than m, and b0,i-m  is 1 only for some i not less than m.) Then: 
 

 

( ) ( )

( ) ( ).2

22

22

10

,1,0

,1,010

krkr

bb

bbkkr

m

i i

i
i

i
mi

i

i
imi

m

+=

+=

+=+

∑ ∑
∑

−

−

 

 
Lemma (4): 2mr(2mk) = r(k). 
 
Proof: If [bi] is the binary numeral for k, [bi-m] is the binary numeral for 2mk. Then 
2mr(2mk) is ∑ ∑= −−

−
−−

−
i i

im
mi

i
mi

m bb 11 222 . Substituting m+i for i gives ∑ −−

i

i
ib 12 , which is 

r(k). 

2.2 1x with r(k) 

Lemma (5): If k1 < 2m, then ( ) ( )01022 krkkr mm

11 =+⋅ . 
 
Proof: 
 

 ( ) ( ) ( )0110 22222 krkrkkr mmmmm ⋅+⋅+⋅ = 11 , by Lemma (3). 

 ( )022 kr mm⋅= 1 , since 1x is cyclic and 2mr(k1) is an integer by Corollary (2). 
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 ( )0kr1= , by Lemma (4). 
 

2.3 Introduction to the FFT Procedure  
Let v be a sequence of vectors, so that vi is the i th vector in v and vi,k is the kth element in 
the i th vector in v. Each vector will be of length 2N, so the element index k satisfies 

Nk 20 <≤ . 
 
Let v0 = h, where h is a vector we are interested in computing the DFT of. 
 
We define vn,k for Nn ≤<0  by dividing k by 2N-n and using the quotient k0 and the re-
mainder k1: 
 
Definition: ( ) .

20
2,02,,

1

0

10
∑

<≤
+

⋅
+ −− ==

n

nNnN

j
kj

krj

kknkn vvv 1  

 
The last vector of this sequence, vN, is the bit-reversal permutation of H, the DFT of h, as 
H is defined in section 2.1.4. To see this, consider an element kNv , . Following the defini-

tion of vn,k, we divide the element index k by 2N-N to get the quotient k and the remainder 
0, which gives: 

 

 ( )
( ) ( )

( ).2
20

2

2

20
,0

2

2

20
0,0, kr

j
j

krj

j
j

krj

j
j

krj
kN N

N

N

N

N

N

N

N

Hhvvv ==== ∑∑∑
<≤

⋅

<≤

⋅

<≤
+

⋅ 111  

 
Thus, vN is H  indexed with a bit-reversal function (refer to Lemma (1) about 2Nr(k)). 
 
The last vector, vN, is the result we want, and the intermediate vectors form a route for 
getting there. Any vector in the sequence can be computed from any previous vector in 
the sequence. To see this, we will show how elements of vn+m can be computed from 2m 
elements of vn, for Nmnn ≤+≤≤0 . To do this, we need to take an index k into the 
vector and decompose it into three parts, k0, k1, and k2, such that k = 2N-nk0 + 2N-n-mk1 + k2 
and nk 20 0 <≤ , mk 20 1 <≤ , and mnNk −−<≤ 20 2 . Given that, we will show below that: 

 
Equation (6): ( ) ,

20 1

1

111

1 ∑
<≤

⋅=
mj

j
jkrj

k ad ω1  

 

where ( )02 kr m

1=ω , 
2101 22, kkkmnk mnNnNvd

+++ −−−= , and 
2101 22, kjknj mnNnNva

++ −−−= . 

 
Equation (6) is the classic butterfly operation of the FFT: 
 

• A few elements of an already-computed vector vn are extracted to form a vector a, 
which has 2m elements. 
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• The elements of a are multiplied by certain coefficients1 to form a new vector 

mjj
j a

20 11

1 ][
<≤

ω . 

• The DFT of mjj
j a

20 11

1 ][
<≤

ω  is computed to give a new vector d. 

• The elements of d become elements in a new vector vn+m. 
 
2m is called the radix of the butterfly. 
 
An advantage of this formulation is that the coefficients and the elements of vn+m and vn 
are explicitly identified. Some formulations of the FFT show that the FFT can be per-
formed using butterfly operations in this form but leave out details or include them only 
as part of a complete algorithm from which it is difficult to identify individual butterfly 
operations. 

2.4 Proof of the FFT Procedure  
Now we prove the claim. First, write k as 2N-nk0 + 2N-n-mk1 + k2 using the k0, k1, and k2 de-
scribed above. Observe that dividing k by 2N-(n+m) gives a quotient 2mk0+k1 and a remain-
der k2. So by definition, vn+m,k is: 
 

 ( )
( ) .

20
2,0

2

22, 2

10

210
∑

+
−−−−

<≤
+

+⋅
+++

=
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mnN

m

mmnN

j
kj

kkrj

kkkmn
vv 1  

 
Divide j by 2m to get a quotient j0 and a remainder j1. Then: 
 
 

( )
( ) ( )

( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
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<≤ <≤
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+⋅+
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+⋅+
+++

−−−
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=
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=
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j j
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j j
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So far, we have used standard algebraic derivations. The next step uses properties of r 

and 1x. By Lemma (5), ( ) ( )01022 krkkr mm

11 =+⋅ . That gives us: 
 

Equation (7): ( )
( ) ( )

( ).
20 20

22,0

2

22,
1 0

210

00101

210
∑ ∑

<≤ <≤
++

⋅+⋅
+++ −−−−− =

m n

mnNnN

m

mmnN

j j
kjj

krjkkrj

kkkmn
vv 11  

                                                 
1 These coefficients are commonly called “twiddles.” I will call them weights. 
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Consider ( )210 22, kjkn mnNnNv

++ −−− . To use the definition of vn, divide 2N-nk0 + (2N-n-mj1 + k2) by 

2N-n to get quotient k0 and remainder (2N-n-mj1 + k2), and then the definition gives: 
 
 ( )

( )
( )∑

<≤
++

⋅
++ −−−−−− =

n

mnNnNmnNnN

j
kjj

krj

kjkn
vv

20
22,022, 21

0

210
1 . 

 
Change j to j0 in that equation and substitute it into Equation (7) to get: 
 

 
( )

( )
( ).

20
22,

2

22,
1

210

101

210
∑

<≤
++

+⋅
+++ −−−−− =

m

mnNnN

m

mmnN

j
kjkn

kkrj

kkkmn
vv 1

 
 
By Lemma (3), r(2mk0 + k1) = r(k1)+r(2mk0), so: 
 

 
( )

( ) ( )

( ) ( )( ) .
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22,

2

20
22,

2
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1

210

1
011

1

210

0111
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∑

∑
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++

⋅

<≤
++

⋅⋅
+++

−−−

−−−−−

=

=

m

mnNnN

m

m

mnNnN

m

mmnN

j
kjkn

j
krkrj

j
kjkn

krjkrj

kkkmn

v

vv

11

11

 

 
This is readily seen to be equivalent to Equation (6). We have proven that Equation (6) 
can be used to compute each vector vn from previous vectors, so a sequence of such com-
putations will compute the DFT of h. 

2.5 Conclusions  
The key statements from the above sections are: 
 
 v0,k = hk, 
 

 

( ) ( )( )∑
<≤

++
⋅

+++ −−−−−− =
m

mnNnN

m

mnNnN

j
kjkn

j
krkrj

kkkmn
vv

20
22,

2

22,
1

210

1
011

210
11 , and 

 
 ( ).2, krkN NHv =  

 
This suffices to show the FFT takes O(n log n) time (here n is the number of elements) 
and how to implement it simply (by choosing an m, constructing a general butterfly im-
plementation, and iterating through the values of n, k0, and k2). For a high-performance 
FFT, it is just our starting point. 
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3 Initial Design 

3.1 Starting the FFT Kernel  

3.1.1 Implement C Code From the Mathematics  
The conclusions above show how to implement an FFT that executes in O(n log n) time. 
To perform an FFT on a vector of 2N elements, first decide what value of m to use in each 
step from some vn to some vn+m. E.g., for a vector of 29 elements, we might use m’s of 3, 
2, 2, and 2 to go from v0 to v3 to v5 to v7 to v9. For each of these v’s after v0, calculate: 
 

 ( ) ( )( )∑
<≤

++
⋅

+++ −−−−−− =
m

mnNnN

m

mnNnN

j
kjkn

j
krkrj

kkkmn
vv

20
22,

2

22,
1

210

1
011

210
11 , 

 
using the corresponding values of n and m. 
 
To be formal, let m0, m1, m2,…, mP-1 be a sequence of positive integers that sum to N. Let 
where n0 = 0 and np+1=np + mp. Then nP=N, and the following set of calculations is suffi-
cient to perform an FFT on a vector of length 2N. 
 

 ( ) ( )( )
Bj

kjkn

j
krkrj

kkkn
pm

pmpnNpnN
p

pm

pmpnNpnN
p

vv












= ∑
<≤

++
⋅

++ −−−−−−
+

20
22,

2

22,
1

210

1
011

2101

11 , 

 

where B represents the variables bounds and is: Pp <≤0 , pnk 20 0 <≤ , pmk 20 1 <≤ , 

and pp mnNk −−<≤ 20 2 . Although this expression is tedious, we can translate it directly into 
C code: 
 

FFT Directly From Mathematics 
for (p  = 0; p  < P             ; ++p )  
for (k0 = 0; k0 < 1<<n[p]       ; ++k0)  
for (k1 = 0; k1 < 1<<m[p]       ; ++k1)  
for (k2 = 0; k2 < 1<<N - n[p] - m[p]; ++k2)  
{  
 complex sum = 0.;  
 for (j1 = 0; j1 < 1<<m[p]; ++j1)  
  sum += one(j1*r(k1)) * one(j1*r((1<<m[p])*k0)) *  
   v [n[p]] [(1<<N - n[p])*k0 + (1<<N - n[p] - m[p])*j1 + k2];  
 v [n[p+1]] [(1<<N - n[p])*k0 + (1<<N - n[p] - m[p])*k1 + k2] = sum;  
}  

 
where one(x)  and r(k)  are functions to compute 1x and r(k). (The exponentiation by j1 
has been written as a multiplication in the exponent of 1.) 

3.1.2 Group Butterfly Calculations Together  
The C code specifies an execution order, but the mathematical expression is a set of op-
erations. They may be performed in any order, subject to the natural constraint that each 
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element vn,k must be calculated before it is used. We will rearrange the calculations to 
benefit computing speed. (In fact, I chose P to stand for “pass,” reflecting that the FFT 
can be performed in P separate passes over the data, exactly as in the loops above. We 
will not stay with this, although I will sometimes refer to calculations in a certain pass, 
such as the first pass, the last pass, or some pass p. These refer to logical positions in the 
calculation and not necessarily chronological positions in the execution sequence.) 
 
First, note that for given values of p, k0 , and k2 , the calculations for different values of 
k1  use the same elements of v[n[p]] . (k1  does not appear in the subscript to v[n[p]] .) 
Because of this, it is efficient to group these calculations together, since that allows all 
the inputs to be read once and used repeatedly. Since k1  and k2  are independent of each 
other, we may freely swap the order of their loops: 
 

for (p  = 0; p  < P             ; ++p )  
for (k0 = 0; k0 < 1<<n[p]       ; ++k0)  
for (k2 = 0; k2 < 1<<N - n[p] - m[p]; ++k2)  
for (k1 = 0; k1 < 1<<m[p]       ; ++k1)  
... 

3.1.3 Create a Butterfly Subroutine  
Define a subroutine: 
 

FFT_Butterflies 
static void FFT_Butterflies(  
 int m,    // Butterfly radix.  
 ComplexArray vOut,  // Address of output vector.  
 ComplexArray vIn,  // Address of input vector.  
 int k0,    // k0 from equation.  
 int c0    // Coefficient for k0.  
)  
{  
 // Coefficient for k1 is coefficient for k0 divided  by 1<<m.  
 const int c1 = c0 >> m;  
 int j1, k1, k2;  
 
 for (k2 = 0; k2 < c1  ; ++k2)  
 for (k1 = 0; k1 < 1<<m; ++k1)  
 {  
  complex sum = 0.;  
  for (j1 = 0; j1 < 1<<m; ++j1)  
   sum += one(j1*r(k1)) * one(j1*r((1<<m)*k0)) *  
    vIn[c0*k0 + c1*j1 + k2];  
  vOut[c0*k0 + c1*k1 + k2] = sum;  
 }  
}  

 
By using this subroutine, our FFT code becomes: 
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First FFT Kernel  
for (p  = 0; p  < P      ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], k0, 1<<N - n[p]); 

 
We will call this the FFT kernel. It will change and grow as we improve the implementa-
tion. 
 
The code above for FFT_Butterflie s  does not show all the inputs vIn[c0*k0 + c1*j1 

+ k2]  being read prior to the loop on k1 , but that will be a feature of the butterfly rou-
tines we construct later. For now, we will state that feature is added to the 
FFT_Butterflies  routine without showing it. A second benefit of the feature is that by 
reading all input elements before writing any output element, the routine may be used 
“in-place,” that is, with the same memory used for vIn  and vOut . 

3.2 Structuring the FFT  

3.2.1 General  
We must choose the values of mp. These are largely influenced by our target processor 
architecture. To begin, I require that N be at least 4, so that some reductions can be made 
later, in section 3.3.5. FFTs for fewer than 16 ( 4<N ) elements can be implemented 
separately. 
 
In most passes, a radix-4 butterfly (m is 2) is attractive, as it is efficient and a high-
performance implementation is feasible. A high-performance general radix-8 butterfly is 
difficult or impossible to implement (see below). Conversely, a radix-2 butterfly is easy 
but inefficient. So for most passes, we will use radix-4 butterflies. 
 
What would be required to implement a general radix-8 butterfly? A general radix-8 but-
terfly has 16 input numbers (real and imaginary components of eight complex numbers), 

14 numbers for weights, and one additional constant (2/2 ). Those numbers occupy 31 
processor registers. (The AltiVec registers hold four floating-point numbers each, but we 
wish to use the parallelism of the processor and perform four butterflies at once. Each 
number needed by one butterfly will occupy one of the four spaces in a register, and the 
parallel numbers of other butterflies will occupy others.) The PowerPC CPU 7400, like 
all existing AltiVec processors, executes instructions in a pipeline. To obtain high per-
formance, multiple instructions must be executed simultaneously, and so multiple calcu-
lations must be in progress at one time. With 31 registers occupied and 32 total, only one 
register is left to work with. 
 
It is possible to start some calculations of the radix-8 butterfly without having all the in-
put data, and it is possible to perform calculations at less than the best possible speed. A 
radix-8 butterfly is more efficient than a radix-4 butterfly in that two passes of a radix-8 
butterfly yield the same mathematical results as three passes of a radix-4 butterfly but re-
quire the data to be read and written only two times instead of three. It is conceivable that 
an FFT structured with radix-8 passes could compete for performance with an FFT struc-
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tured with radix-4 passes. I have not fully explored this possibility and do not consider it 
further in this paper. 

3.2.2 First Pass  
Although we will use m=2 for most passes, we will consider the first m, m0, separately 
because of a significant difference in the butterfly calculations in the initial pass (p is 

zero). When p is zero, np is zero. Recall the bounds on k0 are pnk 20 0 <≤ , so, when p is 

zero, we have 10 0 <≤ k , so k0 is zero and only zero. Then the weight used, ( )02 kr m

1=ω , 

is 1. Since multiplying by 1 is a waste of time, a special butterfly implementation that 
omits the multiplications by the weight will be faster than a general implementation that 
multiplies by the weight, while still getting correct results in this case. 
 
When the multiplications by the weight are not needed, the number of processor registers 
required by an implementation of the butterfly calculations is reduced, since registers are 
not needed to hold the values associated with the weight. In this case, high-performance 
radix-4, radix-8, and radix-16 butterfly implementations are all feasible. Generally, a 
higher-radix butterfly is preferred, for two reasons. One, a good FFT composed of higher-
radix butterflies uses no more, and perhaps fewer, calculations than an FFT composed of 
lower-radix butterflies. Two, with higher-radix butterflies, fewer passes are needed, and 
so the number of times data must be read from and written to memory (or cache) is lower. 
 
Because we are using butterflies with m=2 (radix-4) for all passes after the first, we need 
at least two butterfly implementations for the first pass, one with an even m and one with 
an odd m. The m’s must sum to N, which can be even or odd. Thus, we must use the 
radix-8 butterfly for odd N, and we may use either the radix-4 or radix-16 butterfly for 
even N. The radix-16 butterfly provides a slight performance advantage over the radix-4 
butterfly, but the cost of implementing it might not be worth the slight gain. I will use the 
radix-4 butterfly in this paper. The changes required to support a radix-16 butterfly in the 
initial pass are small. (Among other changes, the minimum value of N will need to be in-
creased from 4 to 5.) 

3.2.3 Summary  
This then gives us an FFT structure. For even N, use a radix-4 butterfly on the first pass 
and all remaining passes. For odd N, use a radix-8 butterfly on the first pass and a radix-4 
butterfly on all remaining passes. 

3.3 Preparing the Kernel  

3.3.1 Separate the First Pass  
The FFT kernel is: 
 

for (p  = 0; p  < P      ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], k0, 1<<N - n[p]); 
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To use a special butterfly routine for the first pass, we should separate that iteration from 
the rest of the loop. That gives: 
 

for (p  = 0; p  < 1      ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], k0, 1<<N - n[p]);  
 
for (p  = 1; p  < P      ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], k0, 1<<N - n[p]); 

 
Some simplifications are now possible. The first loop (on p) is a single iteration, and so is 
the second (on k0 ) since n[p]  is 0. Instances of k0  and n[p]  in these loops may be re-
placed with 0. In the second set of loops, m[p]  is always 2, so it will be replaced. Then 
we have: 
 

p = 0;  
FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], 0, 1<<N);  
 
for (p  = 1; p  < P      ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(2, v[n[p+1]], v[n[p]], k0, 1<<N - n[p]); 

3.3.2 Eliminate Fictitious Mathematical Vectors  
As stated earlier, the butterfly routines can be written to work in place. So we are not re-
quired to have separate memory for v[n[p]]  and v[n[p+1]] . Instead, we can pass the 
same memory location for the butterfly input and output vectors. Before the butterfly, the 
memory will contain elements of 

pnv . After the butterfly, the memory will contain ele-

ments of 
1+pnv . We will use two arrays, named vIn  for the original input array and vOut  

for the final output array. On the first pass, data is read from vIn  and written to vOut . On 
subsequent passes, data is both read from and written to vOut , so all subsequent calcula-
tions are performed in place. Note that vIn  may be the same array as vOut  or may be dif-
ferent. The new code is: 
 

p = 0;  
FFT_Butterflies(m[p], vOut, vIn, 0, 1<<N);  
 
for (p  = 1; p  < P      ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]); 

3.3.3 Specialize Values for the First Pass  
We decided to use an initial radix-8 butterfly if N is odd and an initial radix-4 butterfly if 
N is even, so the first call to FFT_Butterflies  with can be expanded with 3 or 2 substi-
tuted for m[p] : 
 

if (N & 1)  
 FFT_Butterflies(3, vOut, vIn, 0, 1<<N);  
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else  
 FFT_Butterflies(2, vOut, vIn, 0, 1<<N);  
 
for (p  = 1; p  < P      ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]); 

3.3.4 Discuss the Last Two Passes  
The last two passes (when p is P-2 and P-1) are also special, partly for reasons to do with 
the target computer architecture. We classify passes after the first: 
 

• general passes (p < P-2), in which there are many (more than four) iterations on 
k2  for each iteration on k0 , 

• the penultimate pass (p = P-2), in which there are four iterations on k2  for each it-
eration on k0 , and 

• the final pass (p = P-1), in which there is one iteration on k2  for each iteration on 
k0 . 

 
The general passes have the feature that one weight is used for many iterations on k2 , be-
cause the weight depends only on k0  and not on k2 . Thus, we will be able to load the val-
ues associated with a weight once each time k0  changes and use them for many values of 
k2 . 
 
In the penultimate pass, there are four iterations on k2  per iteration on k0 . With AltiVec 
instructions, one iteration of the butterfly instruction sequence will calculate butterflies 
for four values of k2 . Thus, the weight used will change in each iteration of the instruc-
tion sequence. In this case, it is better to use code designed to reload the weight values 
frequently. 
 
In the final pass, there is one iteration on k2  per iteration on k0 . k2  is always zero, and the 
coefficient c1  in the FFT_Butterflies  routine is 1. This means the input elements for 
one butterfly are adjacent to each other in the array, as can be seen by examining the sub-
scripts in the butterfly code. AltiVec instructions are not well suited to data packed so 
closely together, so a special routine is necessary. To complicate matters further, we will 
want to do additional processing in the final pass. 

3.3.5 Separate the Last Two Passes  
The details of designing specialized routines to calculate butterflies in the last two passes 
will be examined in sections 4.3.4 and 4.3.5. For now, we want to prepare the kernel by 
separating those passes: 
 

if (N & 1)  
 FFT_Butterflies(3, vOut, vIn, 0, 1<<N);  
else  
 FFT_Butterflies(2, vOut, vIn, 0, 1<<N);  
 
for (p  = 1; p  < P - 2    ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
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 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);  
 
for (      ; p  < P - 1    ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);  
 
for (      ; p  < P      ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]); 

 
As before, some simplifications become available. The values of 1<<N- n[p]  are known 
constants in the final two sets of loops, where p is P-2 and P-1. np=N, np-1+mp-1=np, and 
mp-1=2, so np-1=N-2. Similarly, np-2=N-4. Thus 1<<N- n[p]  is 16 and 4 in the final two sets 
of loops. The values of n[p]  are not constants but are known to be N-4  and N-2 . Making 
these substitutions gives: 
 

for (      ; p  < P - 1   ; ++p )  
for (k0 = 0; k0 < 1<<N - 4; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 16);  
 
for (      ; p  < P     ; ++p )  
for (k0 = 0; k0 < 1<<N - 2; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 4); 

 
The loop “for (; p < P; ++p) ” can become “if (p < P) ” because there is at most 
one iteration (since p is at least P-1 after the previous set of loops). This discards one 
execution of “++p”, but there is no subsequent code that uses p, so the increment is super-
fluous. Further, if we require that P be at least 2, the condition is necessarily true, so the 
test may be omitted. Requiring P be 2 implies we have at least m0 and m1, each of which 
will be at least 2, so N is at least 4. Our kernel now works only for vectors of at least 16 
elements. (If a radix-16 butterfly is used in the first pass in lieu of a radix-4 butterfly, the 
radix-8 butterfly becomes the smaller possibility in the first pass. Then m0 is at least 3, so 
N is at least 5, and there must be at least 32 elements.) 
 
The kernel is now: 
 

if (N & 1)  
 FFT_Butterflies(3, vOut, vIn, 0, 1<<N);  
else  
 FFT_Butterflies(2, vOut, vIn, 0, 1<<N);  
 
for (p  = 1; p  < P - 2    ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);  
 
for (      ; p  < P - 1   ; ++p )  
for (k0 = 0; k0 < 1<<N - 4; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 16);  
 
for (k0 = 0; k0 < 1<<N - 2; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 4); 
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As we saw in the last set of loops, the “for (; p < P - 1; ++p) ” in the penultimate set 
can be changed to “if (p < P - 1) ”, and the ++p is again superfluous and may be dis-
carded: 
 

Expanded FFT Kernel 
if (N & 1)  
 FFT_Butterflies(3, vOut, vIn, 0, 1<<N);  
else  
 FFT_Butterflies(2, vOut, vIn, 0, 1<<N);  
 
for (p  = 1; p  < P - 2    ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);  
 
if (p < P - 1)  
for (k0 = 0; k0 < 1<<N - 4; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 16);  
 
for (k0 = 0; k0 < 1<<N - 2; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 4); 

3.3.6 Use Butterfly Specializations  
Now that the special cases have been separated in the kernel, we take advantage of them 
by using specializations of the butterfly routine customized for high performance in each 
case. 
 
The initial radix-8 and radix-4 butterflies will be performed by routines that are essen-
tially FFT_Butterflies  specialized to m=2 or m=3 and k0=0. These are named 
FFT8_0Weights  (described in section 4.3.3) and FFT4_0Weights  (described in section 
4.3.2). 
 
The general radix-4 butterflies will be performed by a routine specialized to m=2 and 
vIn =vOut . Rather than require this routine to calculate one(j1*r((1<<m)*k0)) , we will 
pass it precalculated values to use. As discussed in section 3.3.4, only one weight is used 
per value of k0 , so only one weight is passed. This routine is named 
FFT4_1WeightPerCall  (described in section 4.3.1). In section 4.2, I discuss what the 
contents of the weights array should be. 
 
In the penultimate pass, the loop on k2  in FFT_Butterflies  is executed only four times 
in C code, only once when implemented as AltiVec instructions. At the same time, 
FFT_Butterflies  is called many times, since the upper bound on k0  is larger than in 
previous passes. To reduce the overhead of routine calls, we use a routine that incorpo-
rates the loop on k0 . In addition, the routine will be designed to efficiently load the 
weights, one per instruction sequence iteration. This routine is named 
FFT4_1WeightPerIteration  (described in section 4.3.4). Instead of being passed a sin-
gle value of k0 , it is passed the upper bound on k0 , and, instead of being passed a single 
weight, it is passed the array of weights. 
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The final pass similarly incorporates the loop on k0  in its butterfly routine. This routine is 
named FFT4_Final  (described in section 4.3.5). Using these new routines, our kernel be-
comes: 
 

FFT Kernel Using Specialized Butterfly Routines 
if (N & 1)  
 FFT8_0Weights(vOut, vIn, 1<<N);  
else  
 FFT4_0Weights(vOut, vIn, 1<<N);  
 
for (p  = 1; p  < P - 2    ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]);  
 
if (p < P - 1)  
 FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);  
 
FFT4_Final(vOut, 1<<N - 2, weights); 

4 Designing Butterfly Routines 
The bulk of a high-performance FFT implementation is the butterfly routines. The 
FFT_Butterflies  subroutine given in section 3.1.3 is quite general and does not provide 
high performance. We must implement the routines described in section 3.3.6. 
 
These routines incorporate improvements including: 
 

• Read each input element before writing any output to the same memory location, 
so the routine can be used “in-place.” 

• Load weights from a table instead of calculating them. 
• Compute butterflies of specific radices with specialized code. 
• Incorporate a loop iterating on k0 . 
• Omit multiplications by a weight when the weight is 1. 
• Incorporate other desired processing, including rearranging data in memory. 

 
As mentioned, a butterfly routine can read of its input elements before writing any output 
element. This is a straightforward modification and will not be demonstrated for the gen-
eral butterfly routine. It will be a feature of all of the specific high-performance variations 
we write. 

4.1 Prepared Constants  

4.1.1 Internal Weights Are Built into Routine  
The FFT_Butterflies  routine contains two expressions that refer to one  and r . The first 
of these is one(j1*r(k1)) . This depends solely on j1  and k1 , each of which is between 
0 and m. Thus, the expression one(j1*r(k1))  takes on a fixed set of values that is de-
termined by m. When writing a butterfly variation for a specific value of m, those values 
can be incorporated into the routine. 
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For example, in a radix-4 butterfly (m is 2), one(j1*r(k1))  takes on the values 1, -1, i, 
and -i at various times. Rather than compute one(j1*r(k1)) , the routine simply multi-
plies by 1, -1, i, or -i at the appropriate points. 
 

In a radix-8 butterfly, we also see the values 2/22/2 i±± . With the constant 2/2  
prepared at the time the source code is compiled or assembled, no calculation is needed at 
run-time for the values of one(j1*r(k1)) . 

4.1.2 External Weights Are Stored in An Array  
The second expression is one(j1*r((1<<m)*k0)) . The values of this expression depend 
on k0 , so they differ from iteration to iteration in a loop on k0 . Still, we wish to avoid 
computing them when the FFT is performed. A simple arrangement is to calculate all the 

values ( )( ) 1
02

j
kr m

1  takes on and store them in an array, say an array named weights . The 

value of ( )( ) 1
02

j
kr m

1  could be in weights[k0][j1] . 
 
However, we will see in section 4.2 that these values are not all used directly in a high-
performance implementation of a radix-4 butterfly. Instead, for each value of k0, we use 

six floating-point numbers derived from the values ( )( ) 1
02

j
kr m

1  for 0<j1<4. These six val-
ues will be stored in some structure in the array element weights[k0] . 
 
Calculating the values and storing them in an array saves no computation time when per-
forming a single FFT. There is a savings when numerous FFTs on vectors of the same 
length are performed, as these weight calculations need be performed only once, prior to 
performing the first FFT. Reading the values from memory will usually be much faster 
than calculating them. Hence there is a great advantage to storing the values. 
 
Note that the value of m is assumed in weights . A specific preparation of the array 
weights  provides values only for butterflies of a specific radix. To provide values for 
multiple radices, multiple arrays or more-complicated arrangements would be needed. 

4.1.3 Common Weights  
The elements of weights  are independent of the length of the vector being transformed. 
The number of elements we need from the array depends on the length of the vector (k0  
reaches higher values for longer vectors), but the contents of each element are the same. 
For example, every FFT for which k0  reaches the value 7 uses the same value in 
weights[7][1] . Thus, one array of weights (for a specific radix) arranged in this way 
may be easily shared by FFTs of every length. 

4.2 General Radix -4 Butterfly Alg orithm  

4.2.1 Goedecker’s Algorithm  
The general radix-4 butterfly, with an input vector a, an output vector d, and some weight 
ω, is Equation (6) with m=2: 
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Implementations of this calculation that minimize the number of multiplications have 
been known for some time, but the AltiVec architecture, like many others, features a 
fused multiply-add operation. Using this operation, S. Goedecker gives us a 22-
instruction sequence for calculating the radix-4 butterfly.2 Goedecker’s algorithm re-
quires that we prepare the weights in a different form. In place of the six real and imagi-
nary components of ω 1, ω2, and ω3, we use six values calculated from them: 
 
 w1r = Re(ω). 
 w1i = Im(ω)/Re(ω). 
 w2r = Re(ω2). 
 w2i = Im(ω2)/Re(ω2). 
 w3r = Re(ω3)/Re(ω). 
 w3i = Im(ω3)/Re(ω3). 
 
When we wish to perform a radix-4 butterfly, we retrieve those six prepared values and 
read the four complex numbers of a into processor registers named a0r , a0i , a1r , a1i , 
a2r , a2i , a3r , and a3i , whose names indicate the real and imaginary components of the 
elements of a in the natural way. Then Goedecker’s algorithm is: 
 

Goedecker’s Algorithm 
b1r = -  a1i * w1i + a1r.  
b1i = + a1r * w1i + a1i.  
b2r = -  a2i * w2i + a2r.  
b2i = + a2r * w2i + a2i.  
b3r = -  a3i * w3i + a3r.  
b3i = + a3r * w3i + a3i.  
c0r = + b2r * w2r + a0r.  
c0i = + b2i * w2r + a0i.  
c2r = -  b2r * w2r + a0r.  
c2i = -  b2i * w2r + a0i .  
c1r = + b3r * w3r + b1r.  
c1i = + b3i * w3r + b1i.  
c3r = -  b3r * w3r + b1r.  
c3i = -  b3i * w3r + b1i.  
d0r = + c1r * w1r + c0r.  
d0i = + c1i * w1r + c0i.  
d1r = -  c1r * w1r + c0r.  
d1i = -  c1i * w1r + c0i.  
d2r = -  c3i * w1r + c2r.  
d2i = + c3r * w1r + c2i.  
d3r = + c3i * w1r + c2r.  
d3i = -  c3r * w1r + c2i. 

                                                 
2 S. Goedecker, “Fast Radix 2, 3, 4, and 5 Kernels for Fast Fourier Transformations on Computers with Overlapping 
Multiply-Add Instructions,” SIAM Journal of Scientific Computing 18, no. 6 (November 1997): 1605-1611, 
http://epubs.siam.org/sam - bin/dbq/article/28194 . 
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Upon completion of this sequence, d0r , d0i , d1r , d1i , d2r , d2i , d3r , and d3i  contain 
the real and imaginary components of d, as may be verified by working through the alge-
bra. Note that each of the 22 lines corresponds to one AltiVec vmaddfp  or vnmsubfp  in-
struction. (Except those instructions operate on four sets of data, where I have shown 
only one.) 

4.2.2 Division by Zero  
The astute reader will have wondered what happens when Re(ω), Re(ω2), or Re(ω3) is 
zero. The short answer is to never let them be zero. In practice, this turns out to be sim-
ple, an unintended side effect of finite floating-point precision. Re(ω) is zero when ω is i 

(or -i). ω is ( )02 kr m

1 , so it is i when r(2mk0) is ¼. Then 1¼ is, by definition, e2 π i ¼, which is 
eπ/2 i. When preparing the weights, the real part of this is calculated by evaluating 
cos(π/2), which is ideally zero. However, a computer’s floating-point representation of 
π/2 is imperfect, and a small-nonzero value results. This avoids division by zero, but it in-
troduces a small error into the FFT calculation. However, this error is no different from 
the many errors caused by rounding errors in all the other weights, which are also calcu-
lated imprecisely. The FFT calculation is necessarily slightly imprecise. 

4.3 Butterfly Routines  

4.3.1 FFT4_1WeightPerCall  
FFT4_1WeightPerCall  implements FFT_Butterflies  with m=2 and vIn =VOut  and with 
weight values provided so that it need not calculate them. 
 
If we make the first two modifications (replacing m with 2 and vIn  with vOut ) directly to 
FFT_Butterflies  and change the arguments, we get: 
 

static void FFT4_1WeightPerCall(  
 ComplexArray vOut,  // Address of output vector.  
 int k0,    // k0 from equation.  
 int c0,    // Coefficient for k0.  
 CommonWeight weight  // Values for weight calculations.  
)  
{  
 // Coefficient for k1 is coefficient for k0 divided  by 1<<m.  
 const int c1 = c0 >> 2;  
 int j1, k1, k2;  
 
 for (k2 = 0; k2 < c1; ++k2)  
 for (k1 = 0; k1 < 4 ; ++k1)  
 {  
  complex sum = 0.;  
  for (j1 = 0; j1 < 4; ++j1)  
   sum += one(j1*r(k1)) * one(j1*r(4*k0)) *  
    vOut[c0*k0 + c1*j1 + k2];  
  vOut[c0*k0 + c1*k1 + k2] = sum;  
 }  
}  
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Now we will implement Goedecker’s algorithm. Essentially, the loops on k1  and j1  are 
replaced by Goedecker’s algorithm from section 4.2.1, including the necessary reads of 
input elements into symbols a0r , a0i , a1r , a1i , a2r , a2i , a3r , and a3i  and writes of 
output from symbols d0r , d0i , d1r , d1i , d2r , d2i , d3r , and d3i . If weight  is set cor-
rectly, the code above and the code below calculate the same results (aside from differ-
ences in floating-point rounding). 
 

FFT4_1WeightPerCall 
static void FFT4_1WeightPerCall(  
 ComplexArray vOut,  // Address of output vector.  
 int k0,    // k0 from equation.  
 int c0,    // Coefficient for k0.  
 CommonWeight weight  // Values for weight calculations.  
)  
{  
 // Coefficient for k1 is coefficient for k0 divided  by 1<<m.  
 const int c1 = c0 >> 2;  
 int k2;  
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,  
             b1r, b1i, b2r, b2i, b3r, b3i,  
   c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,  
   d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;  
 
 for (k2 = 0; k2 < c1; ++k2)  
 {  
  a0r = vOut.re[c0*k0 + c1*0 + k2];  
  a0i = vOut.im[c0*k0 + c1*0 + k2];  
  a1r = vOut.re[c0*k0 + c1*1 + k2];  
  a1i = vOut.im[c0*k0 + c1*1 + k2];  
  a2r = vOut.re[c0*k0 + c1*2 + k2];  
  a2i = vOut.im[c0*k0 + c1*2 + k2];  
  a3r = vOut.re[c0*k0 + c1*3 + k2];  
  a3i = vOut.im[c0*k0 + c1*3 + k2];  
  b1r = -  a1i * weight.w1i + a1r;  
  b1i = + a1r * weight.w1i + a1i;  
  b2r = -  a2i * weight.w2i + a2r;  
  b2i = + a2r * weight.w2i + a2i;  
  b3r = -  a3i * weight.w3i + a3r;  
  b3i = + a3r * weight.w3i + a3i;  
  c0r = + b2r * weight.w2r + a0r;  
  c0i = + b2i * weight.w2r + a0i;  
  c2r = -  b2r * weight.w2r + a0r;  
  c2i = -  b2i * weight.w2r + a0i;  
  c1r = + b3r * weight.w3r + b1r;  
  c1i = + b3i * weight.w3r + b1i;  
  c3r = -  b3r * weight.w3r + b1r;  
  c3i = -  b3i * weight.w3r + b1i;  
  d0r = + c1r * weight.w1r + c0r;  
  d0i = + c1i * weight.w1r + c0i;  
  d1r = -  c1r * weight.w1r + c0r;  
  d1i = -  c1i * weight.w1r + c0i;  
  d2r = -  c3i * weight.w1r + c2r;  
  d2i = + c3r * weight.w1r + c2i;  
  d3r = + c3i * weight.w1r + c2r;  
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  d3i = -  c3r * weight.w1r + c2i;  
  vOut.re[c0*k0 + c1*0 + k2] = d0r;  
  vOut.im[c0*k0 + c1*0 + k2] = d0i;  
  vOut.re[c0*k0 + c1*1 + k2] = d1r;  
  vOut.im[c0*k0 + c1*1 + k2] = d1i;  
  vOut.re[c0*k0 + c1*2 + k2] = d2r;  
  vOut.im[c0*k0 + c1*2 + k2] = d2i;  
  vOut.re[c0*k0 + c1*3 + k2] = d3r;  
  vOut.im[c0*k0 + c1*3 + k2] = d3i;  
 }  
}  

4.3.2 FFT4_0Weights  
FFT4_0Weights  implements FFT_Butterflies  with m=2 and k0=0. The calculations for 
a weightless radix-4 butterfly are straightforward and can be derived from 
FFT4_1WeightPerCall  by replacing w1r , w2r , and w3r  with 1 and w1i , w2i , and w3i  
with 0 and simplifying the resulting code: 
 

FFT4_0Weights 
static void FFT4_0Weights(  
 ComplexArray vOut,  // Address of output vector.  
 ComplexArray vIn,  // Address of input vector.  
 int c0    // Coefficient for k0.  
)  
{  
 // Coefficient for k1 is coefficient for k0 divided  by 1<<m.  
 const int c1 = c0 >> 2;  
 int k2;  
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,  
   c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,  
   d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;  
 
 for (k2 = 0; k2 < c1; ++k2)  
 {  
  a0r = vIn.re[c1*0 + k2];  
  a0i = vIn.im[c1*0 + k2];  
  a1r = vIn.re[c1*1 + k2];  
  a1i = vIn.im[c1*1 + k2];  
  a2r = vIn.re[c1*2 + k2];  
  a2i = vIn.im[c1*2 + k2];  
  a3r = vIn.re[c1*3 + k2];  
  a3i = vIn.im[c1*3 + k2];  
  c0r = + a2r + a0r;  
  c0i = + a2i + a0i;  
  c2r = -  a2r + a0r;  
  c2i = -  a2i + a0i;  
  c1r = + a3r + a1r;  
  c1i = + a3i + a1i;  
  c3r = -  a3r + a1r;  
  c3i = -  a3i + a1i;  
  d0r = + c1r + c0r;  
  d0i = + c1i + c0i;  
  d1r = -  c1r + c0r;  
  d1i = -  c1i + c0i;  
  d2r = -  c3i + c2r;  
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  d2i = + c3r + c2i;  
  d3r = + c3i + c2r;  
  d3i = -  c3r + c2i;  
  vOut.re[c1*0 + k2] = d0r;  
  vOut.im[c1*0 + k2] = d0i;  
  vOut.re[c1*1 + k2] = d1r ;  
  vOut.im[c1*1 + k2] = d1i;  
  vOut.re[c1*2 + k2] = d2r;  
  vOut.im[c1*2 + k2] = d2i;  
  vOut.re[c1*3 + k2] = d3r;  
  vOut.im[c1*3 + k2] = d3i;  
 }  
}  

4.3.3 FFT8_0Weights  
FFT8_0Weights  implements FFT_Butterflies  with m=3 and k0=0. It may be said that 
the calculations for a weightless radix-8 butterfly are both complicated and straightfor-
ward, as they are very symmetric yet intricate: 
 

FFT8_0Weights 
static void FFT8_0Weights(  
 ComplexArray vOut,  // Address of output vector.  
 ComplexArray vIn,  // Address of input vector.  
 int c0    // Coefficient for k0.  
)  
{  
 // Prepare a constant, sqrt(2)/2.  
 const float sqrt2d2 = .7071067811865475244;  
 // Coefficient for k1 is coefficient for k0 divided  by 1<<m.  
 const int c1 = c0 >> 3;  
 int k2;  
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,  
   a4r, a4i, a5r, a5i, a6r, a6i, a7r, a7i,  
   b0r, b0i, b1r, b1i, b2r, b2i, b3r, b3i,  
   b4r, b4i, b5r, b5i, b6r, b6i, b7r, b7i,  
   c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,  
   c4r, c4i, c5r, c5i, c6r, c6i, c7r, c7i,  
   d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i,  
   d4r, d4i, d5r, d5i, d6r, d6i, d7r, d7i,  
   t5r, t5i, t7r, t7i;  
 
 for (k2 = 0; k2 < c1; ++k2)  
 {  
  a0r = vIn.re[c1*0 + k2];  
  a0i = vIn.im[c1*0 + k2];  
  a1r = vIn.re[c1*1 + k2];  
  a1i = vIn.im[c1*1 + k2];  
  a2r = vIn.re[c1*2 + k2];  
  a2i = vIn.im[c1*2 + k2];  
  a3r = vIn.re[c1*3 + k2];  
  a3i = vIn.im[c1*3 + k2];  
  a4r = vIn.re[c1*4 + k2];  
  a4i = vIn.im[c1*4 + k2];  
  a5r = vIn.re[c1*5 + k2];  
  a5i = vIn.im[c1*5 + k2];  
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  a6r = vIn.re[c1*6 + k2];  
  a6i = vIn.im[c1*6 + k2];  
  a7r = vIn.re[c1*7 + k2];  
  a7i = vIn.im[c1*7 + k2];  
  b0r = a0r + a4r;    // w = 1.  
  b0i = a0i + a4i;  
  b1r = a1r + a5r;  
  b1i = a1i + a5i;  
  b2r = a2r + a6r;  
  b2i = a2i + a6i;  
  b3r = a3r + a7r;  
  b3i = a3i + a7i;  
  b4r = a0r -  a4r;  
  b4i = a0i -  a4i;  
  b5r = a1r -  a5r;  
  b5i = a1i -  a5i;  
  b6r = a2r -  a6r;  
  b6i = a2i -  a6i;  
  b7r = a3r -  a7r;  
  b7i = a3i -  a7i;  
  c0r = b0r + b2r;    // w = 1.  
  c0i = b0i + b2i;  
  c1r = b1r + b3r;  
  c1i = b1i + b3i;  
  c2r = b0r -  b2r;  
  c2i = b0i -  b2i;  
  c3r = b1r -  b3r;  
  c3i = b1i -  b3i;  
  c4r = b4r -  b6i;    // w = i.  
  c4i = b4i + b6r;  
  c5r = b5r -  b7i;  
  c5i = b5i + b7r;  
  c6r = b4r + b6i;  
  c6i = b4i -  b6r;  
  c7r = b5r + b7i;  
  c7i = b5i -  b7r;  
  t5r = c5r -  c5i;  
  t5i = c5r + c5i;  
  t7r = c7r + c7i;  
  t7i = c7r -  c7i;  
  d0r = c0r + c1r;    // w = 1.  
  d0i = c0i + c1i;  
  d1r = c0r -  c1r;  
  d1i = c0i -  c1i;  
  d2r = c2r -  c3i;    // w = i.  
  d2i = c2i + c3r;  
  d3r = c2r + c3i;  
  d3i = c2i -  c3r;  
  d4r = + t5r * sqrt2d2 + c4r;  // w = sqrt(2)/2 * (+1+i).  
  d4i = + t5i * sqrt2d2 + c4i;  
  d5r = -  t5r * sqrt2d2 + c4r;  
  d5i = -  t5i * sqrt2d2 + c4i;  
  d6r = -  t7r * sqrt2d2 + c6r;  // w = sqrt(2)/2 * ( - 1+i).  
  d6i = + t7i * sqrt2d2 + c6i;  
  d7r = + t7r * sqrt2d2 + c6r;  
  d7i = -  t7i * sqrt2d2 + c6i;  
  vOut.re[c1*0 + k2] = d0r;  
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  vOut.im[c1*0 + k2] = d0i ;  
  vOut.re[c1*1 + k2] = d1r;  
  vOut.im[c1*1 + k2] = d1i;  
  vOut.re[c1*2 + k2] = d2r;  
  vOut.im[c1*2 + k2] = d2i;  
  vOut.re[c1*3 + k2] = d3r;  
  vOut.im[c1*3 + k2] = d3i;  
  vOut.re[c1*4 + k2] = d4r;  
  vOut.im[c1*4 + k2] = d4i;  
  vOut.re[c1*5 + k2] = d5r;  
  vOut.im[c1*5 + k2] = d5i;  
  vOut.re[c1*6 + k2] = d6r;  
  vOut.im[c1*6 + k2] = d6i;  
  vOut.re[c1*7 + k2] = d7r;  
  vOut.im[c1*7 + k2] = d7i;  
 }  
}  

 
For readers who wish to analyze the radix-8 butterfly code, it is structured as a sequence 
of three radix-2 passes. The comments show the value of ω where each iteration on k0 
begins. 
 
Discussion of the derivation of the above code is beyond the scope of this paper. Maple 
code that generates the assignment statements is given in appendix A. 

4.3.4 FFT4_1WeightPerIteration  
FFT_1WeightPerIteration  implements a loop on k0  calling FFT_Butterflies  with 
m=2, vIn =Vout , and c1 =4 and with an array of weight values provided so that it need not 
calculate them. FFT_1WeightPerIteration  compute the same results as: 
 

for (k0 = 0; k0 < 1<<N - 4; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 16); 

 
Here is a simple implementation: 
 

static void FFT4_1WeightPerIteration(  
 ComplexArray vOut,    // Address of output vector.  
 int u0,      // Upper bound on k0.  
 const CommonWeight weights[]  // Array of weight values.  
)  
{  
 int j1, k0, k1, k2;  
 
 for (k0 = 0; k0 < u0; ++k0)  
 for (k2 = 0; k2 < 4 ; ++k2)  
 for (k1 = 0; k1 < 4 ; ++k1)  
 {  
  complex sum = 0.;  
  for (j1 = 0; j1 < 4; ++j1)  
   sum += one(j1*r(k1)) * one(j1*r(4*k0)) *  
    vOut[16*k0 + 4*j1 + k2];  
  vOut[16*k0 + 4*k1 + k2] = sum;  
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 }  
}  

 
Here is an implementation using Goedecker’s algorithm: 
 

FFT4_1WeightPerIteration 
static void FFT4_1WeightPerIteration(  
 ComplexArray vOut,    // Address of output vector.  
 int u0,      // Upper bound on k0.  
 const CommonWeight weights[]  // Array of weight values.  
)  
{  
 int k0, k2;  
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,  
             b1r, b1i, b2r, b2i, b3r, b3i,  
   c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,  
   d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;  
 
 for (k0 = 0; k0 < u0; ++k0)  
 {  
  // Load values for current weight.  
  CommonWeight weight = weights[k0];  
 
  for (k2 = 0; k2 < 4 ; ++k2)  
  {  
   a0r = vOut.re[16*k0 + 4*0 + k2];  
   a0i = vOut.im[16*k0 + 4*0 + k2];  
   a1r = vOut.re[16*k0 + 4*1 + k2];  
   a1i = vOut.im[16*k0 + 4*1 + k2];  
   a2r = vOut.re[16*k0 + 4*2 + k2];  
   a2i = vOut.im[16*k0 + 4*2 + k2];  
   a3r = vOut.re[16*k0 + 4*3 + k2];  
   a3i = vOut.im[16*k0 + 4*3 + k2];  
   b1r = -  a1i * weight.w1i + a1r;  
   b1i = + a1r * weight.w1i + a1i;  
   b2r = -  a2i * weight.w2i + a2r;  
   b2i = + a2r * weight.w2i + a2i;  
   b3r = -  a3i * weight.w3i + a3r;  
   b3i = + a3r * weight.w3i + a3i;  
   c0r = + b2r * weight.w2r + a0r;  
   c0i = + b2i * weight.w2r + a0i;  
   c2r = -  b2r * weight.w2r + a0r;  
   c2i = -  b2i * weight.w2r + a0i;  
   c1r = + b3r * weight.w3r + b1r;  
   c1i = + b3i * weight.w3r + b1i;  
   c3r = -  b3r * weight.w3r + b1r;  
   c3i = -  b3i * weight.w3r + b1i;  
   d0r = + c1r * weight.w1r + c0r;  
   d0i = + c1i * weight.w1r + c0i;  
   d1r = -  c1r * weight.w1r + c0r;  
   d1i = -  c1i * weight.w1r + c0i;  
   d2r = -  c3i * weight.w1r + c2r;  
   d2i = + c3r * weight.w1r + c2i;  
   d3r = + c3i * weight.w1r + c2r;  
   d3i = -  c3r * weight.w1r + c2i;  
   vOut.re[16*k0 + 4*0 + k2] = d0r;  
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   vOut.im[16*k0 + 4*0 + k2] = d0i;  
   vOut.re[16*k0 + 4*1 + k2] = d1r;  
   vOut.im[16*k0 + 4*1 + k2] = d1i;  
   vOut.re[16*k0 + 4*2 + k2] = d2r;  
   vOut.im[16*k0 + 4*2 + k2] = d2i;  
   vOut.re[16*k0 + 4*3 + k2] = d3r;  
   vOut.im[16*k0 + 4*3 + k2] = d3i;  
  }  
 }  
}  

 
Note that when this is implemented with AltiVec instructions, the loop on k2  will vanish, 
as all four iterations of the loop are performed by a single iteration of AltiVec instruc-
tions, as indicated by the name FFT4_1WeightPerIteration . 

4.3.5 FFT4_Final  
FFT_1Final  implements a loop on k0  calling FFT_Butterflies  with m=2, vIn =Vout , 
and c1=1 and with an array of weight values provided so that it need not calculate them. 
FFT_Final  should compute the same results as: 
 

for (k0 = 0; k0 < 1<<N - 2; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 4); 

 
Here is a simple implementation: 
 

static void FFT4_Final(  
 ComplexArray vOut,    // Address of output vector.  
 int u0,      // Upper bound on k0.  
 const CommonWeight weights[]  // Array of weight values.  
)  
{  
 int j1, k0, k1, k2;  
 
 for (k0 = 0; k0 < u0; ++k0)  
 for (k2 = 0; k2 < 1 ; ++k2)  
 for (k1 = 0; k1 < 4 ; ++k1)  
 {  
  complex sum = 0.;  
  for (j1 = 0; j1 < 4; ++j1)  
   sum += one(j1*r(k1)) * one(j1*r(4*k0)) *  
    vOut[4*k0 + j1 + k2];  
  vOut[4*k0 + k1 + k2] = sum;  
 }  
}  

 
We can reduce this further since k2  is always zero: 
 

static void FFT4_Final(  
 ComplexArray vOut,    // Address of output vector.  
 int u0,      // Upper bound on k0.  
 const CommonWeight weights[]  // Array of weight values.  
)  
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{  
 int j1, k0, k1;  
 
 for (k0 = 0; k0 < u0; ++k0)  
 for (k1 = 0; k1 < 4 ; ++k1)  
 {  
  complex sum = 0.;  
  for (j1 = 0; j1 < 4; ++j1)  
   sum += one(j1*r(k1)) * one(j1*r(4*k0)) *  
    vOut[4*k0 + j1];  
  vOut[4*k0 + k1] = sum;  
 }  
}  

 
Here is an implementation using Goedecker’s algorithm: 
 

FFT4_Final 
static void FFT4_Final(  
 ComplexArray vOut,    / / Address of output vector.  
 int u0,      // Upper bound on k0.  
 const CommonWeight weights[]  // Array of weight values.  
)  
{  
 int k0;  
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,  
             b1r, b1i, b2r, b2i, b3r, b3i,  
   c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,  
   d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;  
 
 for (k0 = 0; k0 < u0; ++k0)  
 {  
  // Load values for current weight.  
  CommonWeight weight = weights[k0];  
 
  a0r = vOut.re[4*k0 + 0];  
  a0i = vOut.im[4*k0 + 0];  
  a1r = vOut.re[4*k0 + 1];  
  a1i = vOut.im[4*k0 + 1];  
  a2r = vOut.re[4*k0 + 2];  
  a2i = vOut.im[4*k0 + 2];  
  a3r = vOut.re[4*k0 + 3];  
  a3i = vOut.im[4*k0 + 3];  
  b1r = -  a1i * weight.w1i + a1r;  
  b1i = + a1r * weight.w1i + a1i;  
  b2r = -  a2i * weight.w2i + a2r;  
  b2i = + a2r * weight.w2i + a2i;  
  b3r = -  a3i * weight.w3i + a3r;  
  b3i = + a3r * weight.w3i + a3i;  
  c0r = + b2r * weight.w2r + a0r;  
  c0i = + b2i * weight.w2r + a0i;  
  c2r = -  b2r * weight.w2r + a0r;  
  c2i = -  b2i * weight.w2r + a0i;  
  c1r = + b3r * weight.w3r + b1r;  
  c1i = + b3i * weight.w3r + b1i;  
  c3r = -  b3r * weight.w3r + b1r;  
  c3i = -  b3i * weight.w3r + b1i;  
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  d0r = + c1r * weight.w1r + c0r;  
  d0i = + c1i * weight.w1r + c0i;  
  d1r = -  c1r * weight.w1r + c0r;  
  d1i = -  c1i * weight.w1r + c0i;  
  d2r = -  c3i * weight.w1r + c2r;  
  d2i = + c3r * weight.w1r + c2i;  
  d3r = + c3i * weight.w1r + c2r;  
  d3i = -  c3r * weight.w1r + c2i;  
  vOut.re[4*k0 + 0] = d0r;  
  vOut.im[4*k0 + 0] = d0i;  
  vOut.re[4*k0 + 1] = d1r;  
  vOut.im[4*k0 + 1] = d1i;  
  vOut.re[4*k0 + 2] = d2r;  
  vOut.im[4*k0 + 2] = d2i;  
  vOut.re[4*k0 + 3] = d3r;  
  vOut.im[4*k0 + 3] = d3i;  
 }  
}  

4.3.5.1 AltiVec Implementation 
Readers familiar with the AltiVec architecture will appreciate that previous butterfly rou-
tines are nearly ideal for AltiVec implementation. FFT4_Final  presents some interesting 
problems, though. Consider the symbols a0r , a1r , a2i , and a3i . The values for these 
symbols are read from array elements with indices 4*k0+0 , 4*k0+1 , 4*k0+2 , and 4*k0+3 . 
These elements are adjacent to each other, and AltiVec instructions provide no good way 
to perform arithmetic on adjacent elements. Additional instructions must be used to move 
the elements around within the processor registers. 
 
This problem interacts fortuitously with another problem. The FFT finishes with its ele-
ments permuted from the desired order. That is, the FFT procedure returns vN, which is 
the bit-reversal permutation of H. After vN is computed, we would like to rearrange the 
array elements into the desired order. This rearrangement also requires moving elements 
within processor registers. As it happens, quite to our benefit, the same rearrangements 
serve both to provide the desired order and to arrange the elements conveniently for high-
performance calculation. 
 
However, this rearrangement changes the order in which we process elements, with con-
sequences to the weight array. We could use the same weight array as is used in other 
routines, but the calculations of the memory addresses of the weights will be more com-
plicated, and we will need to rearrange the weights within the processor registers to 
match the data. The FFT can be performed faster if the weights are prearranged as 
needed. 
 
This is discussed further in section 6.4. 

5 Generating Weights 
The butterfly routines need prepared weights. Here is code to generate them. 
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5.1 Prerequisites  
A simple constant is used: 
 

TwoPi 
static const double TwoPi = 2 * 3.14159265358979323 84626433; 

 
The values needed to perform a butterfly with one weight can be stored in this structure: 
 

CommonWeight 
typedef struct {  
 float w1r, w1i, w2r, w2i, w3r, w3i;  
} CommonWeight; 

5.2 Subroutines  
The weight-generation routines need some subroutines. Here is a subroutine to calculate 
the integer base-two logarithm of n, that is  n2log : 

 
ilog2 
static inline int ilog2(unsigned int n)  
{  
 int c;  
 for (c = 0; n >>= 1; ++c)  
  ;  
 return c;  
}  

 
With GCC and a PowerPC execution target, the same function may be implemented more 
efficiently with the routine below. Many processors have an instruction similar to 
cntlzw , which counts the number of leading zero bits in a word (of 32 bits). 
 

static inline int ilog2(unsigned int n)  
{  
 int c;  
 asm( " cntlzw %0, %1; subfic %0, %0, 31 "  : " =r " (c) : "r" (n) );  
 return c;  
}  

 
A method is needed to calculate bit-reversals. The following routine calculates the bit-
reversal of a 32-bit number by reversing the bit-reversals of its four eight-bit bytes, which 
are looked up in a table. The table is generated with the code in section B.4. 
 

rw, Reverse Word 
static unsigned int rw(unsigned int k)  
{  
 static const unsigned char b[256] = {  
  0, 128,  64, 192,  32, 160,  96, 224,  16, 144,  80, 208,  48, 176, 112, 240,  
  8, 136,  72, 200,  40, 168, 104, 232,  24, 152,  88, 216,  56, 184, 120, 248,  
  4, 132,  68, 196,  36, 164, 100, 228,  20, 148,  84, 212,  52, 180, 116, 244,  
 12, 140,  76, 204,  44, 172, 108, 236,  28, 156,  92, 220,  60, 188, 124, 252,  
  2, 130,  66, 194,  34, 162,  98, 226,  18, 146,  82, 210,  50, 178, 114, 242,  
 10, 138,  74, 202,  42, 170, 106, 234,  26, 154,  90, 218,  58, 186, 122, 250,  
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  6, 134,  70, 198,  38, 166, 102, 230,  22, 150,  86, 214,  54, 182, 118, 246,  
 14, 142,  78, 206,  46, 174, 110, 238,  30, 158,  94, 222,  62, 190, 126, 254,  
  1, 129,  65, 193,  33, 161,  97, 225,  17, 145,  81, 209,  49, 177, 113, 241,  
  9, 137,  73, 201,  41, 169, 105, 233,  25, 153,  89, 217,  57, 185, 121, 249,  
  5, 133,  69, 197,  37, 165, 101, 229,  21, 149,  85, 213,  53, 181, 117, 245,  
 13, 141,  77, 205,  45, 173, 109, 237,  29, 157,  93, 221,  61, 189, 125, 253,  
  3, 131,  67, 195,  35, 163,  99, 227,  19, 147,  83, 211,  51, 179, 115, 243,  
 11, 139,  75, 203,  43, 171, 107, 235,  27, 155,  91, 219,  59, 187, 123, 251,  
  7, 135,  71, 199,  39, 167, 103, 231,  23, 151,  87, 215,  55, 183, 119, 247,  
 15, 143,  79, 207,  47, 175, 111, 239,  31, 159,  95, 223,  63, 191, 127, 255  

 };  
 unsigned char  
  b0 = b[k >> 0*8 & 0xff],  
  b1 = b[k >> 1*8 & 0xff],  
  b2 = b[k >> 2*8 & 0xff],  
  b3 = b[k >> 3*8 & 0xff];  
 return b0 << 3*8 | b1 << 2*8 | b2 << 1*8 | b3 << 0* 8;  
}  

 
The function r(k), which rotates bits around a “.”, can be computed from rw(k) , which 
reverses bits in a 32-bit field, by shifting the bits right 32 bits in floating-point: 
 

r, Calculate r(k) 
static float r(unsigned int k)  
{  
 return 1./4294967296. * rw(k);  
}  

5.3 Generate Common Weights  
The routine below generates the array of common weights. 
 
The numbers stored in each array element are the numbers needed for Goedecker’s algo-

rithm, described in section 4.2.1. In each iteration the weight is ( )02 kr m

1=ω , from 
Equation (6) in section 2.3. Since we use m=2, we have ( )04kr1=ω . Thus r(4*k0)  is used 
in the code below to generate the numbers. 
 
The caller of this routine passes the length of the vector to be transformed. This is the 
number of elements in the vector to be transformed, not the number of elements in the 
weight array. 
 
This routine generates only 2N/16 weights. In full, 2N/4 weights are needed, as the upper 
limit on k0 in the final pass is 2N/4, as readily seen in the call to FFT4_Final  in section 
3.3.6. Indeed, the loop condition below should be “k0 < n/4 ” to support the kernel as 
written so far. However, in section 6.4, we will modify FFT4_Final  in ways that preclude 
it from using the common weights. It will get its own weights array, and the common ar-
ray generated here will be used only by the other butterfly routines. In this case, the 
greatest upper limit on k0 is 2N/16, as seen in the call to FFT4_1WeightPerIteration  in 
section 3.3.6. 
 
Here is the routine. See comments below about the arguments. 
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GenerateCommonWeights 
static int GenerateCommonWeights(  
 CommonWeight **weights,  // Pointer to array address.  
 int *length,    // Pointer to supported length.  
 int NewLength    // New length to support (1<<N).  
)  
{  
 int k0;  
 
 // Try to allocate space and check result.  
 CommonWeight *p = (CommonWeight *)  
  realloc(*weights, NewLength/16 * sizeof **weights);  
 if (p == NULL)  
  return 1;  
 
 for (k0 = *length/16; k0 < NewLength/16; ++k0)  
 {  
  const double x = TwoPi * r(4*k0);  
  p[k0].w1r = cos(x);  
  p[k0].w1i = tan(x);  
  p[k0].w2r = cos(x+x);  
  p[k0].w2i = tan(x+x);  
  p[k0].w3r = 2. * p[k0].w2r – 1.;  
  p[k0].w3i = tan(3.*x);  
 }  
 
 // Pass address and supported length back to caller .  
 *weights = p;  
 *length = NewLength;  
 
 return 0;  
}  

 
This routine could simply take a vector length as input and return an array of weight val-
ues. However, to facilitate operations by the caller, it provides services to alter an exist-
ing array and to record the supported length. In addition to the vector length to be sup-
ported, the routine is passed two pointers. The first gives the location where an existing 
weight array is stored, which may be NULL. The second gives the location where the 
length associated with the existing array is stored. 
 
This routine then uses realloc  to get the space it needs. This will newly allocate (if the 
pointer is NULL) or reallocate memory. The routine then fills in elements that were not in 
the previous array (if any). It may be used to shorten an array but is more commonly used 
to create an array or lengthen an existing array. 

6 More Kernel Changes 
The code described in previous sections will provide a high-performance FFT, but we can 
still do better. 
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6.1 Group Butterflies by Weight  
In our latest FFT kernel (section 3.3.6), the second set of loops performs general butter-
flies with one weight per call: 
 

for (p  = 1; p  < P - 2    ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]); 

 
Implicit in this call is that the contents of weights[k0]  are read from memory into regis-
ters. There is one such read for every iteration on k0 , and iterations on k0  are repeated in 
subsequent iterations on p. We can eliminate some of the reads by iterating on k0  first 
and then on p, that is, by swapping the order of the loops. 

6.1.1 Calculate New Loop Bounds  
The inner body of the two loops is executed a number of times, each time with a pair of 
values for p and k0 . Consider the set of all such pairs. The current code executes the body 
with each of those pairs, in a certain order. 
 
Our goal is to execute the body with the same set of pairs, but in a different order. To do 
rearrange the loops and get the same pairs, we must calculate new bounds on the variable 
used in each loop. Since the upper bound on k0  depends on p, this requires some mathe-
matics. 
 
The existing code shows us trivially that the set of pairs (p, k0) for which the body is exe-

cuted contains those pairs satisfying  21 −<≤ Pp  and pnk 20 0 <≤ . 

 

np increases strictly as p increases, so p<P-2 and pnk 20 <  imply p is at most P-3 and 

therefore 320
−< Pnk . So we can say 320 0

−<≤ Pnk , and that gives us bounds for an outer 

loop on k0 . Next we consider the bounds for an inner loop p. Those bounds must depend 
on the value of k0 . 
 
It can be shown that the loop bounds for p are ( ) ( ) 22/4log,1max 002 −<≤−+ Ppmk . 

However, it is simpler to keep the lower bound for p in an auxiliary variable pLower  and 

increase pLower  whenever the constraint pnk 20 <  is violated: 

 
pLower = 1;  
for (k0 = 0; k0 < 1<<n[P - 3]; ++k0)  
{  
 if (! (k0 < 1<<n[pLower]) )  
  ++pLower;  
 for (p = pLower; p < P - 2; ++p)  
  FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]);  
}  
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Observe that the initial values for pLower  and k0  satisfy pnk 20 < , because 120 n< , and a 

single increment to pLower  when the constraint is violated suffices to restore it because 
k0  never increases by more than one per iteration. 

6.1.2 Check the New Calculation Order  
We have reordered the calculations and should ensure that we have not violated the nec-
essary order. The problem may be phrased in the following way. Consider an element in 
vOut  with index k. When p is 0, this element will be read once, used in calculations, and 
then written once. This will occur again when p is 1, 2, 3, and so on. These uses of the 
element must occur in that order, so that when it is read for p=p, it contains the result cal-
culated when p=p-1. How do we know the new loop order satisfies this? 
 
The element with index k is read once and written once per value of p, specifically when 

k0  has the value  pnNk −2/ . As p increases, the values of k0  form a non-decreasing se-

quence. Then we can easily see that sorting the pairs of values (p, k0 ) lexicographically 
first by p and then by k0  (the original loop order, iterating on p and then k0 ) yields the 
same order as sorting the pairs first by k0  and then by p (the new loop order). Thus al-
though the references to different array elements have been reordered, the references to 
any one array element k are in the same correct order as they were originally. 

6.1.3 Optimize the Code  
A few calculations can be saved by creating an auxiliary loop to handle the increments to  
pLower . The code above evaluates “k0 < 1<<n[pLower] ” and “k0 < 1<<n[P - 3] ” in 
each iteration on k0 . As long as pLower < P -2 , the former implies the latter, so, each 
time k0  changes, we need test only the former. When it fails, then we will increment 
pLower , and we must test the latter. Observe that “k0 < 1<<n[pLower] ” fails just as we 
have incremented k0  to the value 1<<n[pLower] . If “ pLower < P - 2”, then “k0 < 

1<<n[P - 3] ”, and vice-versa, so we can use “pLower < P -2 ” as our test: 
 

for (pLower = 1, k0 = 0; pLower < P - 2         ; ++pLower)  
for (                  ; k0     < 1<<n[pLower]; ++k 0    )  
for (p = pLower        ; p      < P - 2         ; ++p     )  
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]); 

 
To summarize, the new loops above execute all the same calls to FFT4_1WeightPerCall  
as the original code (repeated below for reference) but in a different and more efficient 
order. 
 

for (p  = 1; p  < P - 2    ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]); 

6.2 Separate the Weightless Butte rflies  
We used special butterfly routines for the first pass because there is a significant gain 
from eliminating multiplications when weights are not needed. Now that we have rear-
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ranged the second set of loops in the kernel, we have again grouped together a set of but-
terflies in which k0 is zero. We again separate these from the rest: 
 

pLower = 1;  
for (p = pLower; p      < P - 2         ; ++p     )  
 FFT4_0Weights(vOut, vOut, 1<<N - n[p]);  
 
for (k0 = 1    ; pLower < P - 2         ; ++pLower)  
for (          ; k0     < 1<<n[pLower]; ++k0    )  
for (p = pLower; p      < P - 2         ; ++p     )  
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]); 

 
The first loop is always executed and is no longer guarded by the loop tests “pLower < 

P-2 ” or “k0 < 1<<n[pLower] ”. However, the former is implied by “p < P -2 ”, which is 
evaluated, and the latter is true because k0  is implicitly 0, so this separation of the first 
loop is safe. 

6.2.1 Create A Variant of FFT4_0Weights  
FFT4_0Weights  has both an input array and an output array as arguments. We only need 
one array in this instance and could use another specialization of the routine. The per-
formance gain is likely to be slight or zero, as the address calculations for the second ar-
ray might be computed entirely in parallel with the floating-point data calculations. 
 
However, there may be a more important reason for using a separate variant of this rou-
tine. The initial pass is an opportune place to perform additional processing, such as rear-
ranging the data in memory so that it is arranged in a way that is efficient for the remain-
ing routines. In such a case, you will need a variant of FFT4_0Weights  that does the addi-
tional processing and another variant that does not do the additional processing. 

6.3 Update the Kernel  
Our FFT kernel now is: 
 

if (N & 1)  
 FFT8_0Weights(vOut, vIn, 1<<N);  
else  
 FFT4_0Weights(vOut, vIn, 1<<N);  
 
pLower = 1;  
for (p = pLower; p      < P - 2         ; ++p     )  
 FFT4_0Weights(vOut, vOut, 1<<N - n[p]);  
 
for (k0 = 1    ; pLower < P - 2         ; ++pLower)  
for (          ; k0     < 1<<n[pLower]; ++k0    )  
for (p = pLower; p      < P - 2         ; ++p     )  
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n[p], weights[k0]);  
 
if (p < P - 1)  
 FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);  
 
FFT4_Final(vOut, 1<<N - 2, weights); 
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This code refers to n[p] , representing np. We do not actually need an array to hold values 
of np; we can calculate them. There is a 1-1 map between p and np, and the operations we 
use on them are isomorphic under the map. (Notably, inequalities involving p are iso-
morphic because np is a strictly increasing function of p.) So every reference to p may be 
replaced by an equivalent reference to np. 
 
We will replace all references to p, pLower , and n[p]  by equivalent expressions of new 
variables n and nLower . n will contain the value previously expressed by n[p] , and 
nLower  will contain the value previously expressed by n[pLower] . The substitutions to 
make are: 
 

• pLower = 1  becomes nLower = N&1 ? 3 : 2 . 
• p = pLower  becomes n = nLower . 
• p < P -2  becomes n < N -4 . 
• ++p becomes n += 2 . 
• ++pLower  becomes nLower += 2 . 
• n[p]  becomes n. 
• n[pLower]  becomes nLower . 

 
The new code is: 
 

FFT Kernel with Reordered Loops and Separated Loop for k0=0 
if (N & 1)  
 FFT8_0Weights(vOut, vIn, 1<<N);  
else  
 FFT4_0Weights(vOut, vIn, 1<<N);  
 
nLower = N&1 ? 3 : 2;  
for (n = nLower; n      < N - 4      ; n += 2     )  
 FFT4_0Weights(vOut, vOut, 1<<N - n);  
 
for (k0 = 1    ; nLower < N - 4      ; nLower += 2)  
for (          ; k0     < 1<<nLower; ++k0       )  
for (n = nLower; n      < N - 4      ; n += 2     )  
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);  
 
if (n < N - 2)  
 FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);  
 
FFT4_Final(vOut, 1<<N - 2, weights); 

 
With all references to p gone, the entire FFT structure is now built into the kernel. We 
could have made these substitutions earlier, but the reasoning in section 6.1.1 depends on 
p being an integer and would be harder to express in terms of n. Also, these substitutions 
specialize the kernel for a particular scheme of n’s. By developing the kernel to this point 
before making the substitutions, it could instead be specialized to other schemes. 
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6.4 Incorporate Bit -Reversal Permut ation  
The result of the FFT, vN, is the bit-reversal permutation of the desired result, H. (This is 
demonstrated in section 2.3). As mentioned in section 4.3.5.1, the final pass is an oppor-
tune place to rearrange the results in memory to produce H instead of vN. Here is one 
scheme for doing so. 

6.4.1 Read Groups of Elements and Write in Bit -Reversed Locations  
To do one butterfly, FFT4_Final  reads and writes four elements with indices 4k0+k1 for 
the four values of k1, 0, 1, 2, and 3. In the final pass, 4/0 0 Nk <≤  (as seen by the fact 

that FFT4_Final  is called with 1<<N-2  as the upper bound on k0 ). Essentially, k0 has N-2 
bits in the final pass. Separate k0 into its highest two bits, kH, and its remaining N-4 low 
bits, kL, so k0=2N-4kH+kL. 
 
Let Hk′  be the bit-reversal of the two bits of kH. Let Lk′  be the bit-reversal of the N-4 bits 

of kL. Let 1k′  be the bit-reversal of the two bits of k1. Observe that the bit-reversal of the 

N-bit number 4(2N-4kH+kL)+k1 is ( ) HL1
424 kkkN ′+′+′− . 

 
FFT4_Final  iterates through all values of k0, performing one butterfly on four elements 
in each iteration. Instead, iterate through values of kL, performing four butterflies on 16 
elements in each iteration. 
 
Specifically, in each iteration, read the 16 elements with indices 4(2N-4kH+kL)+k1. Perform 
four butterflies on these elements, with the appropriate four weights. Write the results to 
the 16 array elements with indices ( ) HL1

424 kkkN ′+′+′− . That is, write the result with in-

dex 4(2N-4kH+kL)+k1 in vN to the bit-reversed index ( ) HL1
424 kkkN ′+′+′− , which is its de-

sired location in H. 
 
When the iterations are completed, the output array will contain results in the order de-
sired, matching H rather than vN. 

6.4.2 Problems  
Attempting to do this in-place will destroy the array, because Lk′  will in many iterations 
be a value that kL has not yet reached. Then data needed in the future is overwritten. An 
easy solution is to use a separate array for output in the final pass, if memory is available. 
Another solution is to read the 16 old elements just before we overwrite them with new 
results. Doing that presents another problem: What do we do with the 16 elements just 
read? It also presents an opportunity: Make use of them. First, it will help to define some 
terminology. 

6.4.3 Terminology  
Let the term “kL-elements” refer to the 16 elements that are indexed by using kL and the 
16 combinations of values of kH and k1. That is, the kL-elements are those whose indices 
in the array are: 
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 ( ){ }4040|24 H11LH
4 <≤∧<≤++− kkkkkN . 

 
Such an index is essentially the bit-wise concatenation of kH, kL, and k1. 
 
Let the term “kL-reversed-elements” refer to the 16 elements that are indexed by using the 
bit-reversal of kL and the 16 combinations of the bit-reversals of the values of kH and k1. 
That is, the kL-reversed-elements are those whose indices in the array are: 
 
 ( ){ }4040|24 H1HL1

4 <≤∧<≤′+′+′− kkkkkN . 
 
Similarly, one of these indices is the bit-wise concatenation of 1k′ , Lk′ , and Hk′ . 
 
Observe that the kL-reversed-elements are also the Lk′ -elements. That is: 
 
 ( ){ }4040|24 H1HL1

4 <≤∧<≤′+′+′− kkkkkN =

( ){ }4040|24 H1HL1
4 <≤∧<≤+′+− kkkkkN . 

 
This is a subtle statement, for the sets look very similar, so it is unsurprising that they are 
equal. It embodies the fact that the set of values {0, 1, 2, 3} for k1 equals the set of bit-
reversed values {0, 2, 1, 3} for Hk′  and vice-versa. It is important because it means that 
the 16 old kL-reversed-elements we read just before overwriting them are precisely the 

Lk′ -elements we can use for new butterfly operations. 

6.4.4 Solution  
We are ready to redesign FFT4_Final  to perform butterflies and permute the results effi-
ciently. After processing some kL-elements, we will read Lk′ -elements and process those. 
When those are done, they are stored in the kL-elements. At that point, the kL-elements 
were already done, so we are free to go on to a new value of kL. 
 
If we write FFT4_Final  with a loop whose body performs four butterflies on 16 ele-
ments, there are three cases to distinguish in each iteration: 
 

• LL kk ′= . The kL-elements are the Lk′ -elements, so there is no need to read the Lk′ -
elements and perform more butterflies. We just go on to a new value of kL. 

• LL kk ′≠  and we have just done the kL-elements. We must read the Lk′ -elements 
for the next iteration. 

• LL kk ′≠  and we have just done the Lk′ -elements. We must go on to a new value of 
kL. 

 
Going on to a new value of kL is a problem, as we must skip elements that were already 
processed when Lk′  indexed those elements in prior iterations. 
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Fortunately, the three cases can all be implemented in simple code that uses a table to de-
termine which location to read next and which location to write next. Using a table both 
eliminates the computation of bit-reversals during the FFT execution and eliminates test-
ing and branching to handle separate cases. 
 
We will prepare a table that contains values of kL in the order we would like to process 
them and the corresponding values of Lk′ . Like the weights, this table can be prepared be-
fore the first FFT is executed. 
 
Consider this pseudo-code: 
 

q = 0;  
Read k L- elements using k L = IndexTable[q].read;  
Perform butterflies on input to get output.  
for (q = 1; q < 1<<N - 4; ++q)  
{  
 Read k L- elements using k L = IndexTable[q].read;  
 Write k L- reversed - elements using k L’ = IndexTable[q - 1].write;  
 Perform butterflies on input to get output.  
}  
Write k L- reversed - elements using k L’ = IndexTable[q - 1].write; 

 
As discussed, this code reads data, performs butterflies, and then reads the next set of in-
put before writing output. It reads the next set of input in each iteration. This is necessary 
in the second of the three cases above. It is unnecessary in the other cases but causes no 
harm. 
 
In section 6.4.6, I demonstrate C code that is nearly identical to the pseudo-code: 
 

q = 0;  
ReadElements(IndexTable[q].read);  
PerformButterflies(weights[q]);  
for (q = 1; q < cH; ++q)  
{  
 ReadElements(IndexTable[q].read);  
 WriteReversedElements(IndexTable[q - 1].write);  
 PerformButterflies(weights[q]);  
}  
WriteReversedElements(IndexTable[q - 1].write); 

 
What should be stored in the index table? We have two requirements: 
 

• Each value of kL such that LL kk ′=  is stored as a single table entry, with the same 
value in the read  and write  members. 

• Each value of kL such that LL kk ′≠  must be stored as a pair of entries. In one en-

try, read  contains kL and write  contains Lk′ . In the other, read  contains Lk′  and 
write  contains kL. The order of these two entries does not matter. 
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Other than this, the table entries may be ordered as desired. Changing the order within 
these constraints will not alter the results that are computed, but it might change perform-
ance, as we will see in section 7.4. 

6.4.5 Index Table Implementation  
This routine generates a table of indices for the final pass. For definitions of the routines 
rw  and ilog2 , see section 5.2. See comments in section 5.3 about the arguments. 
 

FinalIndices 
typedef struct {  
 unsigned short int read, write;  
} FinalIndices; 

 
GenerateFinalIndices 
static int GenerateFinalIndices(  
 FinalIndices **indices,  // Pointer to index array address.  
 int NewLength    // New length to support (1<<N).)  
{  
 // Prepare to bit - reverse a number of N - 4 bits (see below).  
 const int shift = 32 – (ilog2(NewLength) – 4);  
 int kL;  
 
 // Try to allocate space and check result.  
 FinalIndices *p = (FinalIndices *)  
  realloc(*indices, NewLength/16 * sizeof **indices);  
 if (p == NULL)  
  return 1;  
 
 // Pass address back to caller.  
 *indices = p;  
 
 // Iterate through all values of kL.  
 for (kL = 0; kL < NewLength/16; ++kL)  
 {  
  // rw(kL) reverses kL as a 32 - bit number.  To get it as  
  // the reversal of an N - 4 bit number, shift right to  
  // remove 32 - (N - 4) bits.  
  const int kLprime = rw(kL) >> shift;  
 
  // If kLprime < kL, then kL in a previous iteration  had the  
  // value kLprime has now, and we do not want to rep eat it.  
  if (kL <= kLprime)  
  {  
   // If kL == kLprime, add one table entry.  
   // If kL != kLprime, add table entries in both orde rs.  
   *(p++)     = Construct( kL, kLprime );  
   if (kL < kLprime)  
       *(p++) = Construct( kLprime, kL );  
  }  
 }  
 return 0;  
}  

 



Construction of a High-Performance FFT 

42  2.1, August 8, 2004 

The routine Construct  used in the above code is used to construct a FinalIndices  ob-
ject. It is unneeded in C 1999 (ISO/IEC 9899-1999) but is needed by older compilers: 
 

Construct 
static FinalIndices Construct(unsigned int read, unsigned int write)  
{  
 FinalIndices result = { read, write };  
 return result;  
}  

 
Using short int  for the indices has some advantage in an AltiVec implementation, but 
it limits the vector length that the FFT can operate on. A short int  is commonly 16 bits. 
Limiting kL to 16 bits limits the entire index to 20 bits, so only vectors of up to 
220=1,048,576 elements can be supported. 

6.4.6 C Implementation  
The C code fragment in section 6.4.4 will become the body of our new FFT4_Final  rou-
tine. 

6.4.6.1 FFT4_Final 
Here is the new FFT4_Final  routine. The weights required by this routine are described 
in section 6.4.8, and I add some code that will be explained below: 
  

FFT4_Final With Bit -Reversal Permutation 
static void FFT4_Final(  
 ComplexArray vOut,    // Address of output vector.  
 int u0,      // Upper bound on k0.  
 const FinalIndices IndexTable[], // Array of index pairs.  
 const FinalWeights weights[]  // Array of weight values.  
)  
{  
 typedef float FloatBlock[4];  
 FloatBlock  a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,  
               b1r, b1i, b2r, b2i, b3r, b3i,  
     c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,  
     d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;  
 int q = 0;  
 
 ReadElements(IndexTable[q].read);  
 PerformButterflies(weights[q]);  
 for (q = 1; q < u0 >> 2; ++q)  
 {  
  ReadElements(IndexTable[q].read);  
  WriteReversedElements(IndexTable[q - 1].write);  
  PerformButterflies(weights[q]);  
 }  
 WriteReversedElements(IndexTable[q - 1].write);  
}  

 
The various declarations above (such as a0r ) are present even though they appear to be 
unused because I will use macros to show the operations in the routine, and the macros 
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will use the declared identifiers. The macros expand to code in the context of the routine 
and have access to all of its identifiers. This is usually poor style for code to be used in 
actual programs, but it serves well here to illustrate the algorithm. 
 
Note that q is iterated from zero to u0>>2 . In the original version of FFT4_Final , in sec-
tion 4.3.5, u0 iterations were performed. In this new version, four butterflies are per-
formed in each version, and so only u0>>2  iterations are needed. 

6.4.6.2 ReadElements 
ReadElements , below, reads the kL-elements. Previous radix-4 butterfly routines oper-
ated on four elements at a time, kept in objects of type float . We now do four butterflies 
on 16 elements (four sets of four) so we will keep them in objects of type “float [4] ” 
and use array indices to access the elements within those objects. 
 
We should study the array indices carefully. In the original version of FFT4_Final , in 
section 4.3.5, the index had the form “4*k0 + k1 ”. In this version, we have separated k0  
into kH and kL . We defined kH and kL so that k0=2N-4kH+kL, so 4k0+k1 becomes 
2N-2kH+4kL+k1. 2

N-2 is passed to FFT4_Final  in the parameter u0 (see section 6.3). Thus, 
we may use the form “u0*kH + 4*kL + k1 ”. For example, when kH is 2 and k1 is 1, the 
array index is “u0*2 + 4*kL + 1 ”. 
 
Observe that the real (or imaginary) components of the four elements associated with one 
value of kH and four values of k1 are placed by ReadEl ements  one apiece into a0r , a1r , 
a2r , and a3r , in order and ready for butterfly calculations. However, the components as-
sociated with four values of kH (0, 1, 2, and 3) and one value of k1 are placed four apiece 
into one of the objects (a0r , a1r , a2r , or a3r ) in bit-reversed order (0, 2, 1, and 3). 
 
This does not affect the butterfly calculations (as long as the correct weight is used in 
each position). Each of the four butterflies operates on one element from a0r , one from 
a1r , one from a2r , and one from a3r , and the contents of other elements do not affect the 
butterfly. The advantage of putting the elements in this order is that they are then in the 
order in which they must be written to memory. That makes the write operations simpler. 
 

ReadElements 
#define ReadElements(kL)      \  
{            \  
 a0r[0] = vOut.re[u0*0 + 4*kL + 0];    \  
 a1r[0] = vOut.re[u0*0 + 4*kL + 1];    \  
 a2r[0] = vOut.re[u0*0 + 4*kL + 2];    \  
 a3r[0] = vOut.re[u0*0 + 4*kL + 3];    \  
 a0r[1] = vOut.re[u0*2 + 4*kL + 0];    \  
 a1r[1] = vOut.re[u0*2 + 4*kL + 1];    \  
 a2r[1] = vOut.re[u0*2 + 4*kL + 2];    \  
 a3r[1] = vOut.re[u0*2 + 4*kL + 3];    \  
 a0r[2] = vOut.re[u0*1 + 4*kL + 0];    \  
 a1r[2] = vOut.re[u0*1 + 4*kL + 1];    \  
 a2r[2] = vOut.re[u0*1 + 4*kL + 2];    \  
 a3r[2] = vOut.re[u0*1 + 4*kL + 3];    \  
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 a0r[3] = vOut.re[u0*3 + 4*kL + 0];    \  
 a1r[3] = vOut.re[u0*3 + 4*kL + 1];    \  
 a2r[3] = vOut.re[u0*3 + 4*kL + 2];    \  
 a3r[3] = vOut.re[u0*3 + 4*kL + 3] ;    \  
 a0i[0] = vOut.im[u0*0 + 4*kL + 0];    \  
 a1i[0] = vOut.im[u0*0 + 4*kL + 1];    \  
 a2i[0] = vOut.im[u0*0 + 4*kL + 2];    \  
 a3i[0] = vOut.im[u0*0 + 4*kL + 3];    \  
 a0i[1] = vOut.im[u0*2 + 4*kL + 0];    \  
 a1i[1] = vOut.im[u0*2 + 4*kL + 1];    \  
 a2i[1] = vOut.im[u0*2 + 4*kL + 2];    \  
 a3i[1] = vOut.im[u0*2 + 4*kL + 3];    \  
 a0i[2] = vOut.im[u0*1 + 4*kL + 0];    \  
 a1i[2] = vOut.im[u0*1 + 4*kL + 1];    \  
 a2i[2] = vOut.im[u0*1 + 4*kL + 2];    \  
 a3i[2] = vOut.im[u0*1 + 4*kL + 3];    \  
 a0i[3] = vOut.im[u0*3 + 4*kL + 0];    \  
 a1i[3] = vOut.im[u0*3 + 4*kL + 1];    \  
 a2i[3] = vOut.im[u0*3 + 4*kL + 2];    \  
 a3i[3] = vOut.im[u0*3 + 4*kL + 3];    \  
}  

6.4.6.3 WriteReversedElements 
WriteReversedElements  writes the Lk′ -reversed-elements. Because the elements in each 
array are in the desired order, each array can be written to memory with a simple loop. 
Note that kH was bit-reversed to Hk′  by rearranging the elements in ReadElements , and kL 

was bit-reversed to Lk′  by reading it from a table, but k1 has not been bit-reversed yet. 
That is done here, by using 0, 2, 1, and 3 in the highest bits of the element indices: 
 

WriteReversedElements 
#define WriteReversedElements(kLprime)     \  
{             \  
 int kHprime;         \  
 for (kHprime = 0; kHprime < 4; ++kHprime)    \  
 {            \  
  vOut.re[u0*0 + 4*kLprime + kHprime] = d0r[kHprime];  \  
  vOut.re[u0*2 + 4*kLprime + kHprime] = d1r[kHprime];  \  
  vOut.re[u0*1 + 4*kLprime + kHprime] = d2r[kHprime];  \  
  vOut.re[u0*3 + 4*kLprime + kHprime] = d3r[kHprime];  \  
  vOut.im[u0*0 + 4*kLprime + kHprime] = d0i[kHprime];  \  
  vOut.im[u0*2 + 4*kLprime + kHprime] = d1i[kHprime];  \  
  vOut.im[u0*1 + 4*kLprime + kHprime] = d2i[kHprime];  \  
  vOut.im[u0*3 + 4*kLprime + kHprime] = d3i[kHprime];  \  
 }            \  
}  

6.4.6.4 PerformButterflies 
Finally, PerformButterflies  does the calculations: 
 

PerformButterflies 
#define PerformButterflies(weight)     \  
{            \  
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 int i;         \  
 for (i = 0; i < 4; ++i)      \  
 {           \  
  b1r[i] = -  a1i[i] * weight.w1i[i] + a1r[i];  \  
  b1i[i] = + a1r[i] * weight.w1i[i] + a1i[i];  \  
  b2r[i] = -  a2i[i] * weight.w2i[i] + a2r[i];  \  
  b2i[i] = + a2r[i] * weight.w2i[i] + a2i[i];  \  
  b3r[i] = -  a3i[i] * weight.w3i[i] + a3r[i];  \  
  b3i[i] = + a3r[i] * weight.w3i[i] + a3i[i];  \  
  c0r[i] = + b2r[i] * weight.w2r[i] + a0r[i];  \  
  c0i[i] = + b2i[i] * weight.w2r[i] + a0i[i];  \  
  c2r[i] = -  b2r[i] * weight.w2r[i] + a0r[i];  \  
  c2i[i] = -  b2i[i] * weight.w2r[i] + a0i[i];  \  
  c1r[i] = + b3r[i] * weight.w3r[i] + b1r[i];  \  
  c1i[i] = + b3i[i] * weight.w3r[i] + b1i[i];  \  
  c3r[i] = -  b3r[i] * weight.w3r[i] + b1r[i];  \  
  c3i[i] = -  b3i[i] * weight.w3r[i] + b1i[i];  \  
  d0r[i] = + c1r[i] * weight.w1r[i] + c0r[i];  \  
  d0i[i] = + c1i[i] * weight.w1r[i] + c0i[i];  \  
  d1r[i] = -  c1r[i] * weight.w1r[i] + c0r[i];  \  
  d1i[i] = -  c1i[i] * weight.w1r[i] + c0i[i];  \  
  d2r[i] = -  c3i[i] * weight.w1r[i] + c2r[i];  \  
  d2i[i] = + c3r[i] * weight.w1r[i] + c2i[i];  \  
  d3r[i] = + c3i[i] * weight.w1r[i] + c2r[i];  \  
  d3i[i] = -  c3r[i] * weight.w1r[i] + c2i[i];  \  
 }           \  
}  

 

6.4.7 AltiVec Implementation  
The C code in section 6.4.6 converts very nicely to AltiVec instructions. The 
WriteReversedElements  and PerformButterflies  macros are straightforward, but 
ReadElements  requires some work. ReadEl ements  permutes the elements as it reads 
them, which is often a miserable task in AltiVec work. Fortunately, the permutations we 
need work well. 

6.4.7.1 ReadElements, Part I 
Before permuting the elements, they must be read from memory. ReadEl ements  is shown 
with array index expressions that imply a good deal of address arithmetic. These calcula-
tions can be simplified: 
 

• Values of 0, 1, 2, and 3 for kH correspond to certain addresses in the data array, 
four addresses for the real components and four for the imaginary components. 
Calculate these addresses once per FFT and store them in registers named 
highbits00r , highbits01r , highbits10r , highbits11r , highbits00i , 
highbits01i , highbits10i , and highbits11i . 

• When a value for kL  is assigned, calculate the byte offset of 4*k L elements (that 
is, the number of bytes from an element with some index k  to the element with 
index k + 4*kL) . Store this offset in a register named index . 
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With these preparations, the AltiVec instruction “lvx y1r, highbits01r, index ” 
loads four real components into the register y1r . Those four components are 
vOut.re[u0*1+4*kL+0] , vOut.re[u0*1+4*kL+1] , vOut.re[u0*1+4*kL+2] , and 
vOut.re[u0*1+4*kL+3] . (See section 6.4.6.2 regarding the use of u0 as the coefficient 
for kH, which has the value 1 in this example.) Address arithmetic is thus simple, and the 
instructions needed to load all 16 complex elements are: 
 

AltiVec ReadElements, Part I 
lvx  y0r, highbits00r, index  
lvx  y1r, highbits01r, index  
lvx  y2r, highbits10r, index  
lvx  y3r, highbits11r, index  
lvx  y0i, highbits00i, index  
lvx  y1i, highbits01i, index  
lvx  y2i, highbits10i, index  
lvx  y3i, highbits11i, index 

6.4.7.2 ReadElements, Part II 
Next we need to rearrange the elements within the registers, into the bit-reversed order. 
Here are instructions for the real components: 
 

AltiVec ReadElements, Part II 
vmrghw z0r, y0r, y1r  # Merge lesser of two highest bits.  
vmrglw  z1r, y0r, y1r  
vmrghw z2r, y2r, y3r  
vmrglw  z3r, y2r, y3r  
vmrghw a0r, z0r, z2r  # Merge higher of two highest bits.  
vmrglw  a1r, z0r, z2r  
vmrghw a2r, z1r, z3r  
vmrglw  a3r, z1r, z3r 

 
The r  suffix designates real components. Similar code will load, rearrange, and store the 
imaginary components. This diagram illustrates the effects of the merge instructions: 
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Observe that the elements within each block are now in order by the bit-reversals of the 
highest two bits (00…, 10…, 01…, 11…). These elements are ready for writing to mem-
ory in the order they are in H. However, the four blocks are in order by the lowest two 
bits (…00, …01, …10, …11), not the bit-reversals of those bits. This makes sense be-
cause we still want to perform a butterfly operation on this data, and it will be the same 
butterfly we have used so far, taking as input elements indexed 0, 1, 2, and 3, which we 
have placed in registers named a0r , a0i , a1r , a1i , a2r , a2i , a3r , and a3i . 

6.4.7.3 WriteReversedElements 
When we have the results in registers named d0r , d0i , d1r , d1i , d2r , d2i , d3r , and d3i , 
we will write those in bit-reversed order: 
 

AltiVec WriteReversedElements 
stvx  d0r, highbits00r, index  
stvx  d1r, highbits10r, index  
stvx  d2r, highbits01r, index  
stvx  d3r, highbits11r, index  
stvx  d0i, highbits00i, index  
stvx  d1i, highbits10i, index  
stvx  d2i, highbits01i, index  
stvx  d3i, highbits11i, index 

6.4.7.4 PerformButterflies 
An AltiVec implementation of PerformButterflies  is: 
 

AltiVec PerformButterflies  
vnmsubfp b1r, a1i, w1i, a1r  
vmaddfp  b1i, a1r, w1i, a1i  

00…00 00…01 00…11 00…10 01…00 01…01 01…11 01…10 10…00 10…01 10…11 10…10 11…00 11…01 11…11 11…10 

00…00 01…00 01…01 00…01 00…10 01…10 01…11 00…11 10…00 11…00 11…01 10…01 10…10 11…10 11…11 10…11 

00…00 10…00 11…00 01…00 00…01 10…01 11…01 01…01 00…10 10…10 11…10 01…10 00…11 10…11 11…11 01…11 
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vnmsubfp b2r, a2i, w2i, a2r  
vmaddfp  b2i, a2r, w2i, a2i  
vnmsubfp b3r, a3i, w3i, a3r  
vmaddfp  b3i, a3r, w3i, a3i  
 
vmaddfp  c0r, b2r, w2r, a0r  
vmaddfp  c0i, b2i, w2r, a0i  
vnmsubfp c2r, b2r, w2r, a0r  
vnmsubfp c2i, b2i, w2r, a0i  
vmaddfp  c1r, b3r, w3r, b1r  
vmaddfp  c1i, b3i, w3r, b1i  
vnmsubfp c3r, b3r, w3r, b1r  
vnmsubfp c3i, b3i, w3r, b1i  
 
vmaddfp  d0r, c1r, w1r, c0r  
vmaddfp  d0i, c1i, w1r, c0i  
vnmsubfp d1r, c1r, w1r, c0i  
vnmsubfp d1i, c1i, w1r, c0i  
vnmsubfp d2r, c3i, w1r, c2r  
vmaddfp  d2i, c3r, w1r, c2i  
vmaddfp  d3r, c3i, w1r, c2r  
vnmsubfp d3i, c3r, w1r, c2i 

 
The above code presumes that weight values have been loaded into registers named w1r , 
w1i , w2r , w2i , w3r , and w3i . 

6.4.8 Generate Final Weights  
Earlier butterfly routines required six values for one weight for one value of k0 at a time. 
FFT4_Final  now performs butterflies for four values of k0 at a time, so it needs values 
for four weights. Further, the values of k0 are not consecutive, and their order varies de-
pending on N, so FFTs of different lengths need different groups of weights. 
 
In one iteration on q, FFT4_Final  performs butterflies using values for k0 of 2N-40+kL, 
2N-42+kL, 2

N-41+kL, and 2N-40+kL, where kL has the value loaded from IndexTable . The 
butterfly data is in the processor registers in that order (0, 2, 1, and 3), so the weight val-
ues should be available in that order. 
 
This is all the information we need to generate weights for FFT4_Final . First, the six 
weight values for four butterflies are packaged in groups of four, like this: 
 

FinalWeights 
typedef struct {  
 float w1r[4], w1i[4], w2r[4], w2i[4], w3r[4], w3i[4 ];  
} FinalWeights; 

 
Next, the values are calculated and stored by GenerateFinalWeights , below. 
 
The expression “r4kL + kHprime*rn ” used in the code below equals r(4(2N-4kH+kL)), 
which is r(4k0), as required. (See section 5.3.) To see this, note that r4kL  is assigned the 
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value r(4kL), rn  is assigned the value 1/n , which is 1/2N, and kHprime  represents Hk′ . 
Then: 
 
 r4kL + kHprime*rn  = ( ) Nkkr 2/4 HL ′+ . 

 ( ) ( ) N
HL krkr 2/24 2+= , by definition of Hk′  and Lemma (1). 

 ( ) ( )H
N krkr 2

L 24 −+= , by Lemma (4). 

 ( )H
224 kkr N

L
−+= , by Lemma (3). 

 ( )04kr= , by definition of kL and kH. 

 
GenerateFinalWeights 
static int GenerateFinalWeights(  
 FinalWeights **weights,  // Pointer to weight array address.  
 int NewLength,   // New length to support (1<<N).  
 FinalIndices *indices  // Index array address.)  
{  
 const double rn = 1./NewLength;  
 int kHprime, q;  
 
 // Try to allocate space and check result.  
 FinalWeights *p = (FinalWeights *)  
  realloc(*weights, NewLength/16 * sizeof **weights);  
 if (p == NULL)  
  return 1;  
 
 for (q = 0; q < NewLength/16; ++q)  
 {  
  const int kL = indices[q].read;  
  const double r4kL = r(4*kL);  
  for (kHprime = 0; kHprime < 4; ++kHprime)  
  {  
   const double x = TwoPi * (r4kL + kHprime*rn);  
   p[q].w1r[kHprime] = cos(x);  
   p[q].w1i[kHprime] = tan(x);  
   p[q].w2r[kHprime] = cos(x+x);  
   p[q].w2i[kHprime] = tan(x+x);  
   p[q].w3r[kHprime] = 2. * p[q].w2r[kHprime] – 1.;  
   p[q].w3i[kHprime] = tan(3.*x);  
  }  
 }  
 
 // Pass address back to caller.  
 *weights = p;  
 
 return 0;  
}  

6.4.9 Update Kernel  
The new FFT4_Final  routine must be passed a table of indices and an array of weights 
different from the previous weights, so the kernel has to pass the new arguments: 
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FFT Kernel with Final Indices and Weights 
if (N & 1)  
 FFT8_0Weights(vOut, vIn, 1<<N);  
else  
 FFT4_0Weights(vOut, vIn, 1<<N);  
 
nLower = N&1 ? 3 : 2;  
for (n = nLower; n      < N - 4      ; n += 2     )  
 FFT4_0Weights(vOut, vOut, 1<<N - n);  
 
for (k0 = 1    ; nLower < N - 4      ; nLower += 2)  
for (          ; k0     < 1<<nLower; ++k0       )  
for (n = nLower; n      < N - 4      ; n += 2     )  
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);  
 
if (n < N - 2)  
 FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);  
 
FFT4_Final(vOut, 1<<N - 2, finalIndices, finalWeights); 

6.5 FFT Kernel Routine  
The inputs to the FFT kernel are vIn , vOut , N, weights , finalIndices , and 
finalWeights . We can take the code fragment we have developed and make it into a 
complete routine: 
 

FFT Kernel Routine 
static void FFT_Kernel(  
 ComplexArray vOut,    // Address of output vector.  
 ComplexArray vIn,    // Address of input vector.  
 int N,      // N.  
 const CommonWeight *weights,  // Common weight values.  
 const FinalIndices *finalIndices,// Index pairs.  
 const FinalWeights *finalWeights // Final weight va lues.  
)  
{  
 int n, nLower, k0;  
 
 if (N & 1)  
  FFT8_0Weights(vOut, vIn, 1<<N);  
 else  
  FFT4_0Weights(vOut, vIn, 1<<N);  
 
 nLower = N&1 ? 3 : 2;  
 for (n = nLower; n      < N - 4      ; n += 2     )  
  FFT4_0Weights(vOut, vOut, 1<<N - n);  
 
 for (k0 = 1    ; nLower < N - 4      ; nLower += 2)  
 for (          ; k0     < 1<<nLower; ++k0       )  
 for (n = nLower; n      < N - 4      ; n += 2     )  
  FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);  
 
 if (n < N - 2)  
  FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);  
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 FFT4_Final(vOut, 1<<N - 2, finalIndices, finalWeights);  
}  

7 Out-of-Cache Performance 

7.1 Introduction  
The FFT kernel developed so far is excellent when all the memory needed fits within 
processor cache, including the transform data, the weights and table of indices, and any 
miscellaneous data. When the memory does not fit within processor cache, problems oc-
cur. 

7.1.1 Motorola PowerPC CPU 7400 Cache Architecture  
Much discussion in previous sections is generally applicable to a variety of computer ar-
chitectures. To discuss designing for high-performance in the presence of cache architec-
ture issues, it is necessary to be more specific. This paper addresses designing for the 
Motorola PowerPC CPU 7400 or similar CPUs. This specific CPU will be assumed 
throughout the rest of section 7. 
 
The level-1 (L1) data cache in the Motorola PowerPC CPU 7400 is 32,768 bytes. The 
cache is partitioned into 128 sets. Each set contains eight blocks, and each block is 32 
bytes. This cache architecture is not uncommon, and other processors may have a similar 
architecture with different dimensions. 
 
Each memory address maps to one set. That is, when the contents of a memory address 
are brought into cache, they must go into the set assigned to the address. Any of the eight 
blocks within the set may be used. If all blocks are in use, the CPU makes a block avail-
able by selecting a block and discarding the data in it or writing it to memory, as appro-
priate. (The CPU approximates selecting the least-recently-used block to reuse.) 
 
Using C notation, the byte with address a is: 
 

• the byte numbered a%32 in a block and 
• mapped to the cache set numbered a/32 % 128 . 

 
Concerning cache set mapping, observe that data separated by multiples of 4096 bytes 
(32·128) map to the same cache set (if a and b differ by a multiple of 4096, then a/32 % 

128  equals b/32 % 128 ). 
 
Cache blocks are also called cache lines. 32-byte cache blocks are different from the 16-
byte blocks loaded by lvx  instructions and from the programmer-specified blocks in dst  
instructions. 
 
I will refer to the group of 32 bytes in memory that would be loaded into a cache block 
together as a cache block even while it is only in memory and not in cache. 
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7.1.2 Cache Problems  
The cache architecture imposes three important constraints: 
 

• The number of elements that can fit in cache is limited. For complex numbers of 
eight bytes (two floating-point numbers of four bytes each), 4096 elements can fit 
in cache. 

• The number of elements that can fit in a cache set is limited. Elements from eight 
different addresses that map to the same cache set can fit in the set. 

• It is not possible to read less than one cache block from memory (in the absence 
of special control operations). Reading any byte from memory causes all bytes in 
the same block to be read and stored in cache. 

 
We will find that although the entire FFT cannot be perform entirely in cache, the FFT 
can be partitioned into sets of butterfly operations such that each set can be performed en-
tirely in cache. 

7.2 The Cache Size Problem  
Our goal is to partition the FFT into sets of butterfly operations such that each set can be 
performed entirely in cache. 
 
A radix-2m butterfly requires 2m input elements, along with some amount of constant 
data. Choosing a sufficiently small m yields a butterfly for which all the data fits in cache. 
Then each iteration of the loop on k0  can be performed in cache. 
 
If m is even smaller, it may be that the data for several radix-2m butterflies fit in cache. 
Then several iterations of the loop on k0  can be performed in cache. In that case, we have 
a choice: 
 

• We could read the data for one butterfly from memory into cache, perform the 
butterfly, and write the results to memory. 

• We could read the data for several butterflies, perform those butterflies, and write 
the results to memory. 

 
Depending on the bus characteristics, there may be advantages to reading more data se-
quentially at one time. If so, we prefer the latter choice, and we will cluster iterations of 
the loop on k0 . 

7.3 The Cache Set Size Problem  
In the early passes of an FFT, n is small, so 2N-n-m is large. Consider array element indices 
of the form 2N-nk0 + 2N-n-mk1 + k2, which are used by butterfly operations. A single radix-4 
butterfly uses four values of k1. These values are stored in elements that are separated by 
large multiples of a power of two (2N-n-m elements), so they are assigned to the same 
cache set. One cache set can hold values from eight locations. So all data for a single 
radix-4 butterfly can fit in a single cache set. After performing such a butterfly, we could 
increment k2 and repeat the process until the entire pass were completed. Thus it is possi-
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ble to perform an entire butterfly pass while reading and writing each element only once, 
not having to reload any element. 
 
However, we wish to perform more than one pass of radix-4 butterflies. 
 
Consider a butterfly in the third radix-4 pass of an FFT. It needs four elements for input. 
Each of those elements is calculated in the second radix-4 pass from four different input 
elements. So if we wish to calculate two radix-4 passes without reloading data from 
memory, there must be 16 elements in cache at the same time, and those 16 elements are 
widely separated in the array, by multiples of a large power of two. Therefore, they can-
not fit in cache simultaneously unless the cache associativity is at least 16. 
 
If you were so fortunate as to have a cache with an associativity of 16, attempting three 
radix-4 passes would require an associativity of 64. 
 
However, doing one radix-4 pass on one set of data that has been read into cache is unac-
ceptable. While data is in cache, we want to take the FFT operation from vn to vn+m for m 
of a fairly large size. To perform this radix-2m butterfly, we need 2m elements, and we 
need them to fit in a cache set. Since they do not fit in a cache set in their original mem-
ory locations, we must move them. 
 
Suppose we have a buffer of length b elements where we can store data temporarily. We 
can copy the elements we need for one radix-2m butterfly into the buffer, perform the but-
terfly, and copy the elements back to their original locations (or to new locations if we 
like). If the buffer will hold more elements than we need for one butterfly, we can do 
several butterflies at one time. The plan is: 
 

(1) Gather elements together: Copy the data for the butterflies from spread-out ad-
dresses in the data array to sequential addresses in the buffer. 

(2) Do calculations: For each set of 2m elements in the buffer, perform a radix-2m 
butterfly3. 

(3) Scatter elements back: Copy the data from the buffer to spread-out addresses in 
the data array. 

 
The primary effect of this copying is to move the data from addresses where they map to 
the same cache set to addresses where they map to different cache sets. Once the data is 
in the buffer, it may be accessed freely in any order without casting other buffered data 
out of cache. So we may perform radix-2m butterflies efficiently, and the data needs to be 
read from the data array once and written back to it once. The buffer may reside entirely 
cache, so it never needs to be written to or read from memory, although (hopefully small) 
portions of it may be cast out and reread as unintended byproducts of other memory 
operations. 
 

                                                 
3 This does not mean to perform a radix-2m butterfly as one operation as shown in FFT_Butterflie s, but to perform 
it by any efficient means, such as a composition of radix-8 and radix-4 butterflies. 
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How big should the buffer be, what value should b have? There are two advantages to in-
creasing b: 
 

• The larger b is, the larger m may be, and the more calculations may be done per 
element per buffer turnover. 

• Using a larger b without a larger m may gain some advantage in data transfer on 
the bus between memory and cache, if the bus has characteristics such as transfer-
ring sequential addresses more quickly than disordered addresses. 

 
In the latter case, consider that using a larger b without a larger m means the data for 
more butterflies can be held in the buffer. If m is increased by one, the number of differ-
ent (and nonsequential) locations that must be read is doubled. However, if b is increased 
while m remains the same, more data can be read (sequentially) from each of the 2m loca-
tions. Thus, increasing b may increase data transfer rates, while increasing m increases 
the computations per buffer turnover. 
 
Half of cache is a good choice. If the buffer filled all of cache, other necessary data, such 
as weights, could not be kept in cache. If we make the buffer smaller, we lose the above 
performance advantages. 
 
The truly ambitious implementer could use a buffer between half and all of cache. 
 
A design to use such a buffer for the first stage of an FFT is in section 7.6.1. 

7.4 The Cache Block Size Problem  
Reading any byte from memory causes all bytes in the same cache block to be read and 
stored in cache. For the most part, this is not a problem for the FFT. Data is operated on 
in AltiVec blocks of four floating-point numbers at a time. Four single-precision floating-
point numbers take 16 bytes, half of the 32-byte cache block. If real and imaginary com-
ponents of the complex data are stored in the same cache block, then four complex ele-
ments occupy exactly one cache block, and the cache block size coincides well with the 
FFT operations. 
 
If the real and imaginary components are stored separately, some attention must be paid 
to cache block use. 
 
Most FFT operations iterate sequentially through values of k0  and k2 . As the operations 
iterate through the data, they will use first one half and then the other half of each cache 
block, thus completing the use of all the data in the block while it is in cache. 
 
An exception is FFT4_Final , which processes four-element blocks in an order partially 
dictated by the bit-reversal permutation. This order does not necessarily use both halves 
of a cache block in successive iterations. 
 
However, it can be made to do so. As stated in section 6.4.4, there are two constraints 
about storing index pairs, but we otherwise have a good deal of freedom in arranging the 



 Construction of a High-Performance FFT 

2.1, August 8, 2004  55 

index table. We can cluster indices that reside in the same cache blocks. Recall that each 
index in the table (kL) addresses a group of four elements (4kL+0, 4kL+1, 4kL+2, and 
4kL+3). With separated real and imaginary components, we need eight array elements to 
fill a cache block, so we need two indices (kL and kL+1) to be clustered in the index table. 
 
For example, suppose that kL is even and the arrays of real and imaginary components 
each begin on cache block boundaries. After we use the kL-elements (see terminology in 
section 6.4.3), we will want to use the (kL+1)-elements whose components are in the 
same blocks. (Note that we have now added the constraint that the arrays should be 
aligned to cache-block boundaries for best performance. When kL is even, we are depend-
ing on the kL-elements to be in the same blocks as the (kL+1)-elements and not the (kL-
1)-elements.) 
 
However, organizing the table is not as simple as pairing each even kL with kL+1. When 
the kL-elements are used, the Lk′ -reversed-elements are used as well. If LkkL ′≠ , then the 

Lk′ -elements and kL-reversed-elements are also used with the preceding or following in-
dex table entry. We must cluster all of these elements with their cache-block partners. 
 
Fortunately, this is accomplished with changes to GenerateFinalIndices : 
 

Cache-Block Clustering GenerateFinalIndices 
static int GenerateFinalIndices(  
 FinalIndices **indices,  // Pointer to index array address.  
 int NewLength    // New length to support (1<<N).)  
{  
 // Prepare to bit - reverse a number of N - 4 bits (see below).  
 const int shift = 32 -  (ilog2(NewLength) -  4);  
 int kL;  
 
 // Try to allocate space and check result.  
 FinalIndices *p = (FinalIndices *)  
  realloc(*indices, NewLength/16 * sizeof **indices);  
 if (p == NULL)  
  return 1;  
 
 // Pass address back to caller.  
 *indices = p;  
  
/* This routine generates indices for the kL part o f the element  
 index, which is the index minus the two high bits a nd the two  
 log bits.  This routine is never called with length  less than  
 16, so those four bits are always there to remove.  
 
 In addition, we want to cluster the indices by cach e blocks,  
 so we need to remove another low bit, and therefore  another  
 high bit.  This requires that the length be at leas t 64.  
 
 For smaller lengths, all the elements do not form a  whole  
 cluster, so we will generate those indices with sep arate code.  
*/  
 
 // Handle small sizes.  
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 if (NewLength < 64)  
 {  
  *(p++)     = Construct(0, 0); // (0, 0) for lengths 16 and 32.  
  if (16 < NewLength)  
      *(p++) = Construct(1, 1); // (1, 1) for length 32.  
 }  
 
 // Do other sizes, with whole clusters of cache blo cks.  
 else  
 {  
  // Provide names for high bit of zero (h0) and one (h1).  
  const unsigned int h0 = 0, h1 = rw(1) >> shift;  
 
  // Iterate through all values of kL excluding high bit and low bit.  
  for (kL = 0; kL < NewLength/16/2; kL += 2)  
  {  
   // rw(kL) reverses kL as a 32 - bit number.  To get it as  
   // the reversal of an N - 4 bit number, shift right to  
   // remove 32 - (N - 4) bits.  
   const int kLprime = rw(kL) >> shift;  
 
   // If kLprime < kL, then kL in a previous iteration had the  
   // value kLprime has now, and we do not want to repeat it.  
   if (kL <= kLprime)  
   {  
    // Use shorter names for forward kL (F) and reverse kL (R).  
    const unsigned int F = kL, R = kLprime;  
      
/* To convince yourself the following code is corre ct,  
 first check that each pair of addresses are bit - reversals  
 of each other (h0|R|1 is paired with h1|F|0, and so  on).  
 
 Next, in the kL != kLprime case, check that each en try  
 is preceded or followed by its reversal (a pair wit h 
 a write to h1|R|0 is adjacent to a pair with a read  
 from h1|R|0, and so on).  
 
 Finally, in the kL == kLprime case, check that each  of  
 the four executed entries either is its own reversa l  
 (h0|F|0 equals h0|R|0 when F == R) or its preceded or  
 followed by its reversal (same as kL != kLprime cas e).  
*/  
    *(p++)     = Construct( h0|F|0, h0|R|0 );  
    if (kL != kLprime)  
    {  
        *(p++) = Construct( h0|R|0, h0|F|0 );  
        *(p++) = Construct( h1|F|0, h0|R|1 );  
        *(p++) = Construct( h0|R|1, h1|F|0 );  
        *(p++) = Construct( h1|F|1, h1|R|1 );  
    }  
    *(p++)     = Construct( h1|R|1, h1|F|1 );  
    *(p++)     = Construct( h0|F|1, h1|R|0 );  
    *(p++)     = Construct( h1|R|0, h0|F|1 );  
   }  
  }  
 }  
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 return 0;  
}  

 
In addition to cluster final-pass processing by cache blocks, cache control operations can 
be inserted into a variant of FFT4_Final . This may speed up performance by flushing 
data soon after we are done writing it. This releases the unneeded cache blocks, ensuring 
those blocks will be reused first and avoiding the possibility the processor will select for 
replacement blocks containing data that is still needed. 

7.5 Structuring the Multiple -Stage FFT 
In section 3.2, we chose values of mp based on our target processor architecture. To solve 
cache problems, we consider values of mp based on our cache architecture. Instead of the 
term “passes” used in the initial kernel, I use the term “stages” in describing the out-of-
cache FFT. Mathematically, stages and passes are identical except that we generally use 
larger values of m for stages. 
 
In each stage, we will perform radix- pm2  butterflies. Those butterflies will in turn be 
composed of butterflies using the existing butterfly routines. The first stage will be per-
formed using a first pass of FFT4_0Weights  or FFT8_0Weights  followed by passes of 
radix-4 butterflies. In every other stage, only radix-4 butterflies will be used. Thus mp 
must be even for every stage after the first, and m0 must be even or odd according to 
whether N is even or odd. Also, m0 must be at least 2 (the smallest m available in an im-
plemented butterfly routine), although we will never want to use a value this low. 
 
In the first stage, m must be not greater than log2(b), so that the data for one butterfly fits 
in the buffer described in section 7.3. m might be smaller because completely packing the 
buffer with the data for one butterfly means that input elements to the butterfly will be 
adjacent in memory, and then it is difficult to access them with AltiVec instructions. 
There is even some question whether log2(b)-2 is too high for m, as then we must use 
FFT4_1WeightPerIteration  for some of the computation with the buffer rather than 
FFT4_1WeightPerCall . For this design, I choose to limit m to log2(b)-4. (See also sec-
tions 7.5.2 and 7.6.1.3.) 
 
After the first stage, it is possible to perform additional stages using the gather-scatter 
technique. Such stages would also have their values of m constrained by log2(b). Such 
stages are not needed except for FFTs on extraordinarily long vectors and are not exam-
ined in this paper. 
 
The penultimate stage is flexible, but the final stage has severe constraints, so I will dis-
cuss the last stage and then return to the penultimate stage. 
 
In the last stage, we wish to do the bit-reversal permutation. The bit-reversal wreaks 
havoc with cache. Cache and bus performance are generally enhanced by sequential ac-
cess. Bus performance may be hindered by non-sequential access, and cache performance 
is hindered by repeated access to more than eight addresses differing only in their high 
bits. However, while doing a bit-reversal permutation, accessing eight consecutive ele-



Construction of a High-Performance FFT 

58  2.1, August 8, 2004 

ments in one place causes necessitates accesses to eight different places that map to the 
same cache set. Any more overflow a cache set and cause thrashing. 
 
In section 7.4, I discussed clustering elements in cache blocks. If real and imaginary 
components are stored separately and are four-byte floating-point numbers, there are 
eight components in one cache block. The cluster of butterflies needs to read eight such 
cache blocks and write results to eight other cache blocks (at the reversed addresses), in-
termingled with also reading the latter blocks and writing the former blocks. Fortunately, 
the cache associativity is eight and the former and latter blocks are usually (not always!) 
mapped to different cache sets. 
 
This means eight elements strain the cache associativity as far as it will go. To do two 
radix-4 passes, we would need 16 elements. Therefore, FFT4_Final  is the only butterfly 
operation we can put in the final stage without breaking it. The final pass is the final sta-
ge, so mP-1=2. With three stages, P is 3, so mP-1=m2=2. 
 
Given a first stage with some m0 and a last stage with m2=2, the penultimate stage is de-
termined: m1=N-2-m0. 
 
If m1 is small enough that all the data for at least one radix- 12m  butterfly in the penulti-
mate stage fits in cache, then three stages suffice to perform the FFT with good cache be-
havior in each stage. If not, then more stages are required. 

7.5.1 Summary  
Summarizing our multiple-stage FFT design: 
 

• m0 is odd or even according to whether N is odd or even. 
• m0 is no larger than the cached buffer of b elements will permit. 
• m0 may be slightly smaller due to AltiVec inefficiencies with elements located too 

closely together. 
• m2 is 2. 
• m1 is whatever is left over. 
• m1 is no larger than the cache will permit. 
• m1 may be zero, a degenerate case indicating the stage is not used. 

7.5.2 PowerPC CPU 7400 Design  
Level-1 cache on the PowerPC CPU 7400 is 32,768 bytes. If our buffer for gathering data 
is half of cache, then b is 2048. (2048 complex elements of eight bytes each occupy 
16,384 bytes.) Because support for butterfly data spaced more closely together than 
AltiVec blocks (16 bytes, four elements) will not be included in our implementation of 
the first-stage of the multiple-stage FFT, m0 must not be greater than log2(b/4), which is 
9. So m0 could be 9 or 8, according to whether N is odd or even. 
 
However, these values require the use of FFT4_1WeightPerIteration  in the first stage, 
as discussed in section 7.6.1.3. We may find values of 7 or 6 preferable. The value of m0 
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is a flexible part of the FFT design, easily changed by adjusting a compile- or assembly-
time value, so it can be left for tuning after measurements are made on a target system. 
 
The elements needed for a radix- 12m  butterfly have indices 21

112 kkmnN +−−  for 
120 1

mk <≤ . In the penultimate stage, N-n1-m1 is 2, so the indices are 4k1+k2 and range 

from k2 to ( ) 2124 1 km +− , spanning ( )124 1 −m  elements. So ( )124 1 −m  must be not more 
than the number of elements that we can have in cache. 4096 elements would fit but 
would not leave room for weights, so ( )124 1 −m  must be less than 4096. Then m1 must be 
less than 10 and even, so it is at most 8. 
 
At the limits, m0 is 9, m1 is 8, and m2 is 2, so N is 19, and the longest vector for which we 
can efficiently compute the DFT on a PowerPC CPU 7400 without a fourth stage has 
219=524,288 elements. If m0 is limited to 7, then the longest vector for which we can effi-
cient compute the DFT has 217=131,072 elements. 

7.6 Stage Designs  
Now that we have a design for the multiple-stage FFT, we can design the stages them-
selves. We return to our first FFT kernel, from section 3.1.2: 
 

for (p  = 0; p  < P      ; ++p )  
for (k0 = 0; k0 < 1<<n[p]; ++k0)  
 FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], k0, 1<<N - n[p]); 

 
We have two or three stages, so we can unroll the loop on p: 
 

for (k0 = 0; k0 < 1<<n[0]; ++k0)  
 FFT_Butterflies(m[0], v[n[1]], v[n[0]], k0, 1<<N - n[0]);  
 
if (0 < m[1])  
for (k0 = 0; k0 < 1<<n[1]; ++k0)  
 FFT_Butterflies(m[1], v[n[2]], v[n[1]], k0, 1<<N - n[1]);  
 
for (k0 = 0; k0 < 1<<n[2]; ++k0)  
 FFT_Butterflies(m[2], v[n[3]], v[n[2]], k0, 1<<N - n[2]); 

 
Let m0 have the value of m0. Since m1 is N-2-m0, m2 is 2, n0 is 0, n1 is m0, and n2 is N-2, 
and the code becomes: 
 

for (k0 = 0; k0 < 1     ; ++k0)  
 FFT_Butterflies(m0, vOut, vIn, k0, 1<<N);  
 
if (0 < N -2- m0) 
for (k0 = 0; k0 < 1<<m0 ; ++k0)  
 FFT_Butterflies(N -2- m0, vOut, vOut, k0, 1<<N - m0);  
 
for (k0 = 0; k0 < 1<<N - 2; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 4); 
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The first loop has only one iteration: 
 

FFT_Butterflies(m0, vOut, vIn, 0, 1<<N);  
 
if (0 < N -2- m0) 
for (k0 = 0; k0 < 1<<m0  ; ++k0)  
 FFT_Butterflies(N -2- m0, vOut, vOut, k0, 1<<N - m0);  
 
for (k0 = 0; k0 < 1<<N - 2; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 4); 

 
We will write new routines to perform each section in the above code: 
 

FFT_FirstStage(m0, vOut, vIn, 1<<N);  
 
if (0 < N -2- m0) 
 FFT_PenultimateStage(vOut, m0, N);  
 
FFT_FinalStage(vOut, 1<<N - 2); 

 
Actually, the new routines will need prepared constants to compute efficiently: 
 

Multiple -Stage Kernel 
FFT_FirstStage(m0, vOut, vIn, 1<<N, weights);  
 
if (0 < N -2- m0) 
 FFT_PenultimateStage(vOut, m0, N, weights);  
 
FFT_FinalStage(vOut, 1<<N - 2, finalIndices, finalWeights); 

7.6.1 First Stage  
When called via:  
 

FFT_FirstStage(m0, vOut, vIn, 1<<N, weights); 

 
FFT_FirstStage  must perform the calculations defined by: 
 

FFT_FirstStage Prototype 
FFT_Butterflies(m0, vOut, vIn, 0, 1<<N); 

 
where m0 and N are large. To do this efficiently, we will create a new specialization of 
FFT_Butterflies  for this situation. We will gather data into a buffer, calculate some 
butterflies, and scatter the data back to a data array. 

7.6.1.1 Gather and Scatter 
Here are subroutines to gather the data into a buffer and scatter it back to an array. To get 
the 2m elements needed for all the values of k1 in a butterfly, we iterate k1  through each 
value. To get all the data for a cluster, we iterate on c . Data is gathered from spread-apart 
locations in the data array (using c1*k1 ) and collected in close-together locations in the 
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buffer (using cluster*k1 ). At each location, sequential data is copied by iterating c . 
Each time these routines are called, the caller passes a different value of k2 , using it to 
step through the data array. 
 

Gather 
static void Gather(  
 ComplexArray destination,  // Destination of copying.  
 ComplexArray source,  // Source of copying.  
 int u1,     // Upper limit on k1, equals 1<<m.  
 int c1,     // Coefficient for k1.  
 int k2,     // Current value of k2.  
 int cluster    // Butterfly sets per cluster.  
)  
{  
 int k1, c;  
 
 for (k1 = 0; k1 < u1     ; ++k1)  
 for (c  = 0; c  < cluster; ++c )  
  destination[cluster*k1 + c] = source[c1*k1 + k2+c];  
}  

 
Scatter 
static void Scatter(  
 ComplexArray destination,  // Destination of copying.  
 ComplexArray source,  // Source of copying.  
 int u1,     // Upper limit on k1, equals 1<<m.  
 int c1,     // Coefficient for k1.  
 int k2,     // Current value of k2.  
 int cluster    // Butterfly sets per cluster.  
)  
{  
 int k1, c;  
 
 for (k1 = 0; k1 < u1     ; ++k1)  
 for (c  = 0; c  < cluster; ++c )  
  destination[c1*k1 + k2+c] = source[cluster*k1 + c];  
}  

7.6.1.2 Calculating Butterflies 
Here is a first version of FFT_FirstStage : 
 

First FFT_FirstStage 
static void FFT_FirstStage(  
 int m,      // log2 of butterfly radix.  
 ComplexArray vOut,    // Address of output vector.  
 ComplexArray vIn,    // Address of input vector.  
 int c0,      // Coefficient for c0.  
 const CommonWeight weights[]  // Array of weight values.  
)  
{  
 // Coefficient for k1 is coefficient for c0 divided  by 1<<m.  
 const int c1 = c0 >> m;  
 const int u1 = 1<<m;  
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 // Cluster size is how many sets fit in buffer at o ne time.  
 const int cluster = b >> m;  
 
 int k2;  
 
 // Process values of k2 in clusters.  
 for (k2 = 0; k2 < c1; k2 += cluster)  
 {  
  Gather(buffer, vIn, u1, c1, k2, cluster);  
  FFT_Butterflies(m, buffer, buffer, 0, b);  
  Scatter(vOut, buffer, u1, c1, k2, cluster);  
 }  
}  

 
The code is simple enough, but why is b passed to FFT_Butterflies ? That formal ar-
gument is c0 , the coefficient for k0 , which is 2N-n in the mathematics. In this initial pass, 
n is 0, so we would normally pass 2N, or 1<<N. 
 
In FFT_Butterflies , c1  is derived from the formal argument c0  (actual argument b), 
and c1  is used in two ways. It is the coefficient for k1 , used to locate elements in the ar-
ray, and it is the upper bound of the loop on k2 , so it specifies the number of iterations for 
k2 . 
 
In both cases, the normal value of c1  would not work. First, we have moved elements 
from their original locations; they are at different indices in buffer . Second, we have 
gathered only cluster  sets of data, not all of them. 
 
We can see that passing b as the actual argument satisfies both purposes. 
FFT_Butterflies  calculates “c1 = c0 >> m ”. Having been passed b for c0 , this gives 
b>>m, which equals cluster . As we can see from the Gather  code, cluster  is both the 
coefficient for k1  used to place elements in the buffer and the number of sets of data. 
 
As written, this code requires that cluster  divide c1 , so that k2  ends at exactly c1  after a 
whole number of clusters. cluster  is b>>m, so b>>m must divide c1 , which means b must 
divide c1<<m. c1  is c0>>m, and the formal argument c0  is passed 1<<N as the actual ar-
gument (in section 7.6), so b must divide 1<<N. Since 1<<N is a power of two, this 
amounts to saying b must be a power of two. This restriction may be lifted by separating 
a final iteration from the loop to handle a partial cluster. Such a modification would have 
to be propagated to the more efficient code below. That is not shown in this paper. 
 
Another constraint on b is that it must be a multiple of 1<<m. b is divided by 1<<m to set 
cluster , and then each call to Gather  gathers data for cluster  butterflies, so it gathers 
cluster<<m  elements. If b is a multiple of 1<<m, then cluster<<m  is b. If not, only 
cluster<<m  elements are gathered, and cluster<<m  should be passed to 
FFT_Butterflies  in lieu of b. This is the same as reducing b to the nearest multiple of 
1<<m. 
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7.6.1.3 Specializing the Butterflies 
FFT_FirstStage  contains a call to FFT_Butterflies : 
 

FFT_Butterflies(m, buffer, buffer, 0, b); 

 
This should be replaced with a specialization optimized for this situation. Observe that 
this call transforms the contents of buffer  from v0 to vm. We already have optimized 
code that does this. The first sets of loops in the FFT kernel transform v0 (in vIn)  to 

pnv  

(in vOut) . We can take this code from the kernel: 
 

if (N & 1)  
 FFT8_0Weights(vOut, vIn, 1<<N);  
else  
 FFT4_0Weights(vOut, vIn, 1<<N);  
 
nLower = N&1 ? 3 : 2;  
for (n = nLower; n      < N - 4      ; n += 2     )  
 FFT4_0Weights(vOut, vOut, 1<<N - n);  
 
for (k0 = 1    ; nLower < N - 4      ; nLower += 2)  
for (          ; k0     < 1<<nLower; ++k0       )  
for (n = nLower; n      < N - 4      ; n += 2     )  
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]); 

 
and make appropriate substitutions. To know what substitutions to make, let us review 
the code. This code: 
 

• reads from vIn  and writes to vOut , 
• evaluates N & 1  to decide whether radix-8 or radix-4 is used first, 
• uses N-4  in various loop tests to limit n to N-4  (thus yielding vN-4), and 
• passes 1<<N and 1<<N-n  for the c0  argument, which is used for element spacing 

and loop counting. 
 
To use this code for our new purpose, we will make the following substitutions. 
 

• We want to operate on the data in buffer, so vIn  and vOut  become buffer . 
• We will start with radix-8 or radix-4 according to whether the formal argument m 

is odd or even, so N & 1  becomes m & 1 . 
• We want to calculate vm rather than vN-4, so the loop limits change from N-4  to m. 
• The vector has length b instead of 1<<N, so 1<<N becomes b, and 1<<N-n  becomes 

b>>n . 
 
This yields: 
 

if (m & 1)  
 FFT8_0Weights(buffer, buffer, b);  
else  
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 FFT4_0Weights(buffer, buffer, b);  
 
nLower = m&1 ? 3 : 2;  
for (n = nLower; n      < m        ; n += 2     )  
 FFT4_0Weights(buffer, buffer, b>>n);  
 
for (k0 = 1    ; nLower < m        ; nLower += 2)  
for (          ; k0     < 1<<nLower; ++k0       )  
for (n = nLower; n      < m        ; n += 2     )  
 FFT4_1WeightPerCall(buffer, k0, b>>n, weights[k0]);  

 
Note that if b>>n  reaches 16, the final loop on n is better done with a call to 
FFT4_1WeightPerIteration  (which is specialized for this case) than with a loop calling 
FFT4_1WeightPerCall . This design, while it will calculate correct results if b>>n  is 16, 
is not the most efficient in that case. In the current design, this routine will not be called 
on to do this. n reaches the value m-2, and m is passed the value m0, so b>>n  reaches 
b>>m0-2 . We will select b and m0 to keep 02/ mb  above 16. 

7.6.1.4 Finished Routine 
Putting the new code into the routine gives: 
 

FFT_FirstStage 
static void FFT_FirstStage(  
 int m,      // log2 of butterfly radix.  
 ComplexArray vOut,    // Address of output vector.  
 ComplexArray vIn,    // Address of input vector.  
 int c0,      // Coefficient for c0.  
 const CommonWeight weights[]  // Array of weight values.  
)  
{  
 // Coefficient for k1 is coefficient for c0 divided  by 1<<m.  
 const int c1 = c0 >> m;  
 const int u1 = 1<<m;  
  
 // Cluster size is how many sets fit in buffer at o ne time.  
 const int cluster = b >> m;  
 
 int n, nLower, k, k0, k2;  
 
 // Process values of k2 in clusters.  
 for (k2 = 0; k2 < c1; k2 += cluster)  
 {  
  Gather(buffer, vIn, u1, c1, k2, cluster);  
 
  if (m & 1)  
   FFT8_0Weights(buffer, buffer, b);  
  else  
   FFT4_0Weights(buffer, buffer, b);  
 
  nLower = m&1 ? 3 : 2;  
  for (n = nLower; n      < m        ; n += 2     )  
   FFT4_0Weights(buffer, buffer, b>>n);  
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  for (k0 = 1    ; nLower < m        ; nLower += 2)  
  for (          ; k0     < 1<<nLower; ++k0       )  
  for (n = nLower; n      < m        ; n += 2     )  
   FFT4_1WeightPerCall(buffer, k0, b>>n, weights[k0]);  
 
  Scatter(vOut, buffer, u1, c1, k2, cluster);  
 }  
}  

7.6.2 General Stages  
If an FFT is being performed on a very long vector, more than three stages are required. 
(See the end of section 7.5.) After the first stage, the input elements to butterflies are still 
far apart and must still be gathered together. However, the code in FFT_FirstStage  can-
not be used as is, as it is structured for n=0. The code in FFT_PenultimateStage , below, 
is structured for general n, but it does not gather and scatter data. To support high-
performance with very long vectors, another stage would have to be designed. 
 
A routine implementing such a stage would suffice to handle vectors of any length, as it 
could be used as many times as necessary to process any number of intermediate stages. 
However, such a routine is not discussed in this paper. 
 
For the reader who would design such a routine, note that an argument k0  must be added 
to the Gather  and Scatter  routines. The routines in section 7.6.1.1 implicitly have k0=0, 
since they are used only in the first stage. 

7.6.3 Penultimate Stage  
In the penultimate stage, n is large, so 2N-n-m is small, and the cache set size is not a prob-
lem. This means we do not need the gather-scatter technique used in the first stage. How-
ever, cache size is still a problem, so the penultimate stage must be done in sets of butter-
fly operations that can each be performed in cache. 
 
When called via: 
 

FFT_PenultimateStage(vOut, m0, N, weights); 

 
FFT_PenultimateStage  must perform the calculations defined by: 
 

FFT_PenultimateStagePrototype 
for (k0 = 0; k0 < 1<<m0  ; ++k0)  
 FFT_Butterflies(N - m0- 2, vOut, vOut, k0, 1<<N - m0); 

 
This code computes vN-2 from 

0mv . Another way to compute vN-2 from 
0mv , given that N-

2-m0 is even, is: 
 

for (n = m0; n < N - 2; n += 2)  
for (k0 = 0; k0 < 1<<n; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n); 
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That is, compute vn for n= m0+2, m0+4, m0+6,…, N-2, where each vn being computed 
form the previous one in this sequence by radix-4 butterflies. (For a reminder about this 
loop structure, compare this code to the first FFT kernel in section 3.1.3.) To be general, I 
will r eplace the actual argument m0 with a formal argument nStage , representing the 
value of n for which vn is input to the stage. 
 
The inner loop can be partitioned into groups of iterations such that all the input data for 
each group fits in cache. Let g be the number of elements used in a group of iterations. 
Generally, g should be as large as it can be without excluding other data, such as weights, 
from cache. g might or might not be the same as b, the number of elements in the buffer 
used in the first stage. 
 
If g divides 1<<N, then the code to process the butterflies in groups is: 
 

for (n  = nStage; n  < N - 2       ; n += 2)  
for (k  = 0     ; k  < 1<<N      ; k += g)  
for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0  )  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n); 

 
We could also write code that works for any value of g: 
 

for (n  = nStage; n < N - 2; n += 2)  
{  
 // Do whole groups up to last.  
 for (k  = 0     ; k  < (1<<N) - g  ; k += g)  
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0  )  
  FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);  
 
 // Do last group, whether partial or whole.  
 for (k0 = k>>N - n; k0 < 1<<n      ; ++k0  )  
  FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);  
}  

 
By removing the constraint, the latter code may allow use of a larger g, and that may im-
prove performance by grouping bus transactions into longer sequential accesses. For sim-
plicity, I will use the former code. 
 
We have now grouped the butterflies within each iteration of n so that the data of the 
group fits in cache, but, in one iteration on n, many such groups are processed. As multi-
ple iterations on n are executed, the data must be reloaded into cache as each group is be-
gun. Fortunately, k  and n are independent, so we can easily swap the order of their loops: 
 

for (k  = 0     ; k  < 1<<N      ; k += g)  
for (n  = nStage; n  < N - 2       ; n += 2)  
for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0  )  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n); 

 
Now we have partitioned all the butterflies in the penultimate stage into groups whose 
data fits in cache, and we iterate through the groups only once. Therefore, this design for 
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the penultimate stage will read each element from memory into cache exactly once and 
write an element from cache to memory exactly once (assuming no external factors inter-
fere with cache operations and that the stage starts and finishes with no elements in 
cache). 
 
Cache control operations could be inserted before each iteration on k  to read the data that 
will be needed for the iteration and after each iteration to write data from cache to mem-
ory and make room in cache for new data. 
 
Within this design, we can still reorganize the calculations for computational efficiency, 
without affecting the cache grouping. As with the FFT kernel, the penultimate pass is best 
performed by specialized code. The penultimate pass of the FFT is the final pass of this 
stage. So, within the loop in k , we separate the last iteration on n: 
 

for (k  = 0; k < 1<<N; k += g)  
{  
 for (n  = nStage; n  < N - 4       ; n += 2)  
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0  )  
  FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);  
 
 for (k0 = k>>4  ; k0 < (k+g)>>4  ; ++k0  )  
  FFT_Butterflies(2, vOut, vOut, k0, 16);  
}  

 
Note that the original for-loop on n performs this last iteration only if “n < N -2 ” evalu-
ates to true. This occurs if nStage < N -2 , which is true if there is any work for the rou-
tine to do at all. Our design calls FFT_PenultimateStage  only if there is work for it, that 
is, if 0 < N -2- m0. So we can omit the test “n < N -2 ” in this code. 
 
In the FFT kernel, we found it useful to reorder the loops to group butterflies by weight. 
That is possible here in the first iteration on k , when k  is 0, so we will separate that itera-
tion. In the other iterations on k , weights are not used repeatedly in different passes. 
(Compare the upper bound on k0  when n is n to the lower bound on k0  in the next pass, 
when n is n+2: (k+g)>>N - n versus k>>N-( n+2) . If k  is at least g, as it is after the first it-
eration, the latter is at least twice the former. So k0  always begins a new loop at a higher 
value than it ended the previous loop.) The new code with the first iteration on k  sepa-
rated is: 
 

Early FFT_PenultimateStage 
for (n  = nStage; n  < N - 4   ; n += 2)  
for (k0 = 0     ; k0 < g>>N - n; ++k0  )  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);  
 
for (k0 = 0     ; k0 < g>>4  ; ++k0  )  
 FFT_Butterflies(2, vOut, vOut, k0, 16);  
 
for (k = g; k < 1<<N; k += g)  
{  
 for (n  = nStage; n  < N - 4       ; n += 2)  
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0  )  
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  FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);  
 
 for (k0 = k>>4  ; k0 < (k+g)>>4  ; ++k0  )  
  FFT_Butterflies(2, vOut, vOut, k0, 16);  
}  

 
The loop: 
 

for (k0 = 0; k0 < g>>4; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 16); 

 
is equivalent to: 
 

FFT4_1WeightPerIteration(vOut, g>>4, weights); 

 
However, the loop: 
 

for (k0 = k>>4; k0 < (k+g)>>4 ; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 16); 

 
cannot be directly computed with FFT4_1WeightPerIteration , because it does not start 
k0  at 0. We need a variation of FFT4_1WeightPerIteration  that takes both lower and 
upper bounds: 
 

FFT4_1WeightPerIterationB(vOut, k>>4, (k+g)>>4, wei ghts); 

 
The reader can see by inspecting FFT4_1WeightPerIteration  in section 4.3.4 that the 
following is an implementation of FFT4_1WeightPerIterationB : 
 

FFT4_1WeightPerIterationB 
static void FFT4_1WeightPerIterationB(  
 ComplexArray vOut,    // Address of output vector.  
 int l0,      // Lower bound on k0.  
 int u0,      // Upper bound on k0.  
 const CommonWeight weights[]  // Array of weight values.  
)  
{  
 FFT4_1WeightPerIteration(vOut + (l0<<4), u0 - l0, weights + l0);  
}  

 
Now our second-stage code becomes: 
 

for (n  = nStage; n  < N - 4   ; n += 2)  
for (k0 = 0 ; k0 < g>>N - n; ++k0  )  
 FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);  
 
FFT4_1WeightPerIteration(vOut, g>>4, weights);  
 
for (k = g; k < 1<<N; k += g)  
{  
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 for (n  = nStage; n  < N - 4       ; n += 2)  
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0  )  
  FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n);  
 
 FFT4_1WeightPerIterationB(vOut, k>>4, (k+g)>>4, wei ghts);  
}  

 
The two calls to FFT_Butterflies  are efficiently computed by FFT4_1WeightPerCall , 
so we will replace them: 
 

for (n  = nStage; n  < N - 4   ; n += 2)  
for (k0 = 0 ; k0 < g>>N - n; ++k0  )  
 FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);  
 
FFT4_1WeightPerIteration(vOut, g>>4, weights);  
 
for (k = g; k < 1<<N; k += g)  
{  
 for (n  = nStage; n  < N - 4       ; n += 2)  
 for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0  )  
  FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);  
 
 FFT4_1WeightPerIterationB(vOut, k>>4, (k+g)>>4, wei ghts);  
}  

 
Finally, we wish to change the orders of the first two loops and separate the k0=0 itera-
tion, as we did in the FFT kernel. The derivations are the same as for the kernel, so they 
are left as an exercise for the reader. The only change in the resulting code is that nLower  
is initialized to nStage  instead of “N&1 : 3 : 2 ” (each value is the starting n in the re-
spective FFT structure) and the loop bound on k0  is changed from 1<<nLower  to g>>N-

nLower . The new code is: 
 

FFT_PenultimateStage 
static void FFT_PenultimateStage(  
 ComplexArray vOut,    // Address of output vector.  
 int nStage,     // n at start of stage.  
 int N,      // N.  
 const CommonWeight weights[]  // Array of weight values.  
)  
{  
 int n, nLower, k, k0;  
 
 nLower = nStage;  
 for (n = nLower; n      < N - 4        ; n += 2     )  
  FFT4_0Weights(vOut, vOut, 1<<N - n);  
 
 for (k0 = 1    ; nLower < N - 4        ; nLower += 2)  
 for (          ; k0     < g>>N - nLower; ++k0       )  
 for (n = nLower; n      < N - 4        ; n += 2     )  
  FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);  
 
 FFT4_1WeightPerIteration(vOut, g>>4, weights);  
 



Construction of a High-Performance FFT 

70  2.1, August 8, 2004 

 for (k = g; k < 1<<N; k += g)  
 {  
  for (n  = nStage; n  < N - 4       ; n += 2)  
  for (k0 = k>>N - n; k0 < (k+g)>>N - n; ++k0  )  
   FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);  
 
  FFT4_1WeightPerIterationB(vOut, k>>4, (k+g)>>4, wei ghts);  
 }  
}  

7.6.4 Final Stage  
When called via: 
 

FFT_FinalStage(vOut, 1<<N - 2, finalIndices, finalWeights); 

 
FFT_FinalStage  must perform the calculations defined by: 
 

FFT_FinalStage Prototype 
for (k0 = 0; k0 < 1<<N - 2; ++k0)  
 FFT_Butterflies(2, vOut, vOut, k0, 4); 

 
and it must perform the bit-reversal permutation. This is identical to the function that 
FFT4_Final  was created to implement efficiently, so FFT_FinalStage  could be: 
 

FFT_FinalStage 
static void FFT_FinalStage(  
 ComplexArray vOut,    // Address of output vector.  
 int u0,      // Upper bound on k0.  
 const FinalIndices IndexTable[], // Array of index pairs.  
 const FinalWeights weights[]  // Array of weight values.  
)  
{  
 FFT4_Final(vOut, u0, IndexTable, weights);  
}  

 
However, FFT_FinalStage  has to operate on data that does not all fit in cache simulta-
neously, and thus we may want to implement it as a new variant of FFT4_Final  that in-
cludes cache-control operations. 
 
It was mentioned in section 6.4 that the data rearrangement needed for the final butter-
flies meshes nicely with the data rearrangement of the bit-reversal permutation. There is 
an additional advantage in the out-of-cache FFT because the butterfly operations are 
largely calculations and intraregister data movement, while the bit-reversal permutation is 
largely memory reading and writing, so they can execute simultaneously. 

7.7 Cache Operations  
Previous sections show an FFT algorithm design that organizes the work in a way suit-
able for the cache architecture, primarily by arranging for data to be operated on in 
groups small enough to fit in cache. The fact that the data can be read into cache, kept 
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there, and written to memory in an efficient manner does not mean that the processor will 
do so. We may need to direct the processor in these activities by using explicit cache op-
erations. 
 
Because the usefulness of cache operations is partially dependent on L2 and memory bus 
speeds and characteristics, this paper only lists potential performance enhancements from 
cache operations that might exist and does not give a definitive design. 
 
Also, L2 cache control on the Motorola PowerPC CPU7400 and some other AltiVec 
processors is imperfect and does not provide all the operations we would desire. 
 
In addition, the benefits of various operations will vary at different vector lengths. A 
complete design for best performance at every length therefore requires tailoring cache 
operations to each length. 

7.7.1 Cache Operations  
AltiVec processors offer a variety of cache operations. The details are beyond the scope 
of this paper. The operations may be categorized: 
 

• Load. Data is loaded into cache in advance of its use in a computation. 
• Allocate. Blocks are created in cache with zero or undefined data without reading 

from memory. 
• Mark.  Data is marked most- or least-recently-used to influence the processor’s 

choice of blocks to remove from cache when bringing in new blocks. 
• Store. Data is written from cache to memory (if it has been modified in cache). 
• Remove. Data is removed from cache. 

 
Cache operations will be discussed in these terms without addressing variants. For exam-
ple, the 7400 has separate methods to load data intended only for reading and to load data 
intended for reading and writing. Another example is that there are instructions to store 
data without removing it (dcbst ), to store data and remove it (dcbf ), and to remove data 
without storing it (dcbi ). In the former example, the choice is determined by the situation 
and is obvious. In the latter case, the specific instruction used is an implementation de-
tail—the categories given above describe the operation sufficiently. 

7.7.2 Allocate Buffer in Cache  
The gathering step will copy data to a buffer in cache. Because the existing contents of 
the buffer will be completely overwritten, there is no need to read them from memory. 
 
On the Motorola PowerPC CPU 7400, quickly issuing store instructions that fill a cache 
block results in the processor gathering all the stores together and writing the resulting 
block to cache. (This store-gathering is unrelated to the data gathering of our FFT algo-
rithm.) If this does not occur, only part of a cache block is written. The remainder of the 
block must come from memory, and so reads from memory are performed. For high per-
formance, these reads should be avoided. 
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On processors like the 7400, store-gathering usually provides the desired behavior. If it 
does not (the program does not issue store instructions sufficiently quickly) or on other 
processors, the buffer may be allocated in cache, to avoid reading it from memory. This 
step can be done once before the first gather operation and need not be repeated if the 
buffer is kept in cache. 

7.7.3 Load Data Being Gathered  
In step (1), when data is being gathered, it may be useful to load into cache parts of the 
data array shortly before they are read. This may also be unnecessary as the copying is 
limited by the rate at which data can be read from memory, and there is little other work 
to do while waiting for data to arrive. 

7.7.4 Remove Data After Gathering  
After data has been read from the array and written to a buffer, the cache blocks with im-
ages of the array are not needed for calculations and can be discarded. One might think 
these blocks will be needed again soon, when the scattering is done to copy the data from 
the buffer back to the array. However: 
 

• The blocks generally do not remain in cache, due to the cache set size problem, 
which is the reason we are gathering data. 

• There is no advantage in having the blocks in cache because when we write the 
results, they can be written to memory without reading the existing contents (us-
ing either store-gathering or another means, depending on the processor). 

• Keeping the blocks in cache may result in other data being cast out of cache, such 
as parts of the buffer used early in the gathering or parts of the table of weights. 

 
Thus, there may be an advantage to discarded the data after it is read, either by explicitly 
removing it or by marking it least-recently-used. 

7.7.5 Write Results Without Reading  
When the first-stage results are copied from the buffer back to the array, the issue about 
writing entire cache blocks exists. Again, store-gathering or another method should pre-
vent unnecessary reads. 

7.7.6 Remove Data After Scattering  
After results have been copied from the buffer back to the array, they will not be used 
again in the first stage, so they could be removed from cache. However, they will be used 
again in subsequent stages. 

7.7.7 Remove Buffer  
When the first stage is done, the buffer contains results from the last set of butterflies. If 
we go on and do other work, the processor will eventually recognize that data in cache 
has not been used and will select it for removal. To remove the data from cache, the 
processor will write it to memory. We do not want that to occur. To avoid it, we could 
remove the buffer. 
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7.7.8 Penultimate Stage  
The penultimate stage might benefit from loading the data of each group before it is used, 
loading the weights used by each group of data before they are used, and either storing 
and removing the data after each group is done or marking the data least-recently-used. 
 
The weights could also be removed. However, some weights are used by more than one 
group in the penultimate stage, so we would wish to remove only weights that will not be 
used again, or perhaps to refrain from removing weights until the end of the stage. 

7.7.9 Final Stage  
The final stage is driven by a table of indices as is not readily amenable to cache opera-
tions. Because the table entries are non-sequential, it is not possible to usefully issue se-
quential load operations for the data in final stage. Some attempt could be made to read 
the table ahead of loading the data and issue individual loads. 
 
The weights are read sequentially, since the weight table is prepared to match the index 
table, so weights could be loaded in advance. 
 
After being used, results and weights could be removed from cache or marked least-
recently-used. 

7.7.10 After the FFT  
When the FFT is complete, the application using it will go on to other things, and the 
FFT may be able to enhance performance by leaving the cache in a state useful to the ap-
plication. Because the last operation in the FFT is the non-sequential final pass with bit-
reversal, there is not a good description of what remains in cache. 
 
If the memory bus in use performs sequential accesses more efficiently than non-
sequential accesses, it may be useful to ensure that cache is stored after completion of an 
FFT on a long vector. Then, when the application goes on to other work, it may load data 
sequentially and benefit from the faster execution of sequential accesses. If modified data 
were left in cache by the FFT, the reading of new data would have to be interleaved with 
the writing of FFT results, resulting in non-sequential accesses on the memory bus. 

8 Reverse DFT 
The reverse-DFT of a 2N-element vector H is the vector h: 
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Some algebra will show that the reverse-DFT is the inverse of the DFT, that the reverse-
DFT of the DFT of h is h. 
 
The original DFT may be called the forward-DFT. 
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Aside from swapping H and h, the definition of the reverse-DFT differs from the defini-
tion of the DFT in two ways: The exponent is negated and all results are multiplied by 
1/2N. 

8.1 Conjugating Elements  
Let V* denote the vector formed by exchanging the real and imaginary components of 
each element of a vector V. That is, if Vk=a+bi, then V*

k=b+ai. Let DFT(V) denote the 
DFT of a vector V. Then h=(DFT(1/2N · H*)*. In other words, we can perform a reverse 
DFT by exchanging the real and imaginary components of a vector H, multiplying the re-
sult by 1/2N, taking the DFT, and exchanging the real and imaginary components again. 
 

To see that this is so, observe that ( ) ( )biaibiaiaib +=−=+ , where bia +  denotes the 
complex conjugate of a+bi. That is, swapping the real and imaginary components is 
equivalent to conjugating and multiplying by i. Then (DFT(1/2N · H*)* is: 
 

 




 Hii

N2

1
DFT . 

 
Element k of this vector is: 
 

 ∑∑∑
<≤<≤<≤

==
N

N

N

N

N

N

j
jN

jk

j
jN

jk

j
jN

jk

HiiHiiHii
20

2

20

2

20

2

2

1

2

1

2

1
111  

 ( ) ( ) ∑∑∑
<≤

−

<≤

−

<≤

−
=−=−=

N

N

N

N

N

N

j
j

jk

N
j

j

jk

N
j

jN

jk

HHiiHii
20

2

20

2

20

2

2

1

2

1

2

1
111 . 

 
Thus element k of (DFT(1/2N · H*)* is indeed element k of the reverse-DFT of H. Thus, 
we can compute a reverse-DFT using a DFT if we implement two additional things: ex-
changing the real and imaginary components before and after the DFT and multiplying 
by 1/2N. 
 
If arrays of complex numbers are implemented with two pointers to arrays, one for the 
real components and one for the imaginary components, then exchanging the components 
in each element of H is implemented simply by exchanging the two pointers. 
 
If arrays of complex numbers are implemented as arrays of pairs of real and imaginary 
components, then the data must actually be exchanged before and after the DFT. This 
need not involve any additional work. An alternate version of FFT4_0Weights  or 
FFT8_0_Weights  can exchange the components as it loads them, and an alternate version 
of FFT4_Final  can exchange the components as it stores them. 
 
The former is used in the demonstration code. The latter is easily implemented, although 
it requires duplicate some amount of code. 
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8.2 Scaling in the Butterfly Routines  
This leaves the matter of multiplying the data by 1/2N. Our choices for this are quite 
flexible. The DFT is linear, so the multiplications can be inserted before or after the DFT 
with the same results. The multiplications can even be inserted inside the FFT computa-
tion if done in a consistent manner. 
 
Consider this variant of FFT4_0Weights : 
 

FFT4_0WeightsScale 
static void FFT4_0WeightsScale(  
 ComplexArray vOut,  // Address of output vector.  
 ComplexArray vIn,  // Address of input vector.  
 int c0,    // Coefficient for k0.  
 float scale   // Scale for reverse transform.  
)  
{  
 // Coefficient for k1 is coefficient for k0 divided  by 1<<m.  
 const int c1 = c0 >> 2;  
 int k2;  
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,  
   c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,  
   d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i;  
 
 for (k2 = 0; k2 < c1; ++k2)  
 {  
  a0r = vIn.re[c1*0 + k2] * scale;  
  a0i = vIn.im[c1*0 + k2] * scale;  
  a1r = vIn.re[c1*1 + k2];  
  a1i = vIn.im[c1*1 + k2];  
  a2r = vIn.re[c1*2 + k2];  
  a2i = vIn.im[c1*2 + k2];  
  a3r = vIn.re[c1*3 + k2];  
  a3i = vIn.im[c1*3 + k2];  
  c0r = + a2r * scale + a0r;  
  c0i = + a2i * scale + a0i;  
  c2r = -  a2r * scale + a0r;  
  c2i = -  a2i * scale + a0i;  
  c1r = + a3r + a1r;  
  c1i = + a3i + a1i;  
  c3r = -  a3r + a1r;  
  c3i = -  a3i + a1i;  
  d0r = + c1r * scale + c0r;  
  d0i = + c1i * scale + c0i;  
  d1r = -  c1r * scale + c0r;  
  d1i = -  c1i * scale + c0i;  
  d2r = -  c3i * scale + c2r;  
  d2i = + c3r * scale + c2i;  
  d3r = + c3i * scale + c2r;  
  d3i = -  c3r * scale + c2i;  
  vOut.re[c1*0 + k2] = d0r;  
  vOut.im[c1*0 + k2] = d0i;  
  vOut.re[c1*1 + k2] = d1r;  
  vOut.im[c1*1 + k2] = d1i;  
  vOut.re[c1*2 + k2] = d2r;  



Construction of a High-Performance FFT 

76  2.1, August 8, 2004 

  vOut.im[c1*2 + k2] = d2i;  
  vOut.re[c1*3 + k2] = d3r;  
  vOut.im[c1*3 + k2] = d3i;  
 }  
}  

 
The intent in this routine is that the caller will pass 1/2N in scale , and the routine will 
produce results as if all the input data were multiplied by scale . This could be accom-
plished simply by multiplying each input number by scale . However, the above code 
takes advantage of the availability of a fused multiply-add instruction that will perform a 
multiplication and an addition in the same time as an add. All but two of the multiplica-
tions have been incorporated into existing additions. 
 
Notice that a0r  and a0i  are multiplied by scale , yielding scaled results. Then, wherever 
FFT4_0Weights  originally added an unscaled number to a scaled number, 
FFT4_0WeightsScale  multiplies the unscaled number by scale as it adds it to the scaled 
number, yielding a consistent scaled result. By the end of the routine, all results are prop-
erly scaled. 
 
Similar changes can be made to FFT8_0Weights  to produce FFT8_0WeightsScale . 
FFT8_0Weights  already includes multiplications, by a symbol named sqrt2d2 , but the 
contents of that symbol can be multiplied by scale  to get the desired result, as shown 
here: 
 

FFT8_0WeightsScale 
static void FFT8_0WeightsScale(  
 ComplexArray vOut,  // Address of output vector.  
 ComplexArray vIn,  // Address of input vector.  
 int c0,    // Coefficient for k0.  
 float scale   // Scale for reverse transform.  
)  
{  
 // Prepare a constant, sqrt(2)/2, with the scaling incorporated.  
 const float sqrt2d2 = .7071067811865475244 * scale;  
 // Coefficient for k1 is coefficient for k0 divided  by 1<<m.  
 const int c1 = c0 >> 3;  
 int k2;  
 float a0r, a0i, a1r, a1i, a2r, a2i, a3r, a3i,  
   a4r, a4i, a5r, a5i, a6r, a6i, a7r, a7i,  
   b0r, b0i, b1r, b1i, b2r, b2i, b3r, b3i,  
   b4r, b4i, b5r, b5i, b6r, b6i, b7r, b7i,  
   c0r, c0i, c1r, c1i, c2r, c2i, c3r, c3i,  
   c4r, c4i, c5r, c5i, c6r, c6i, c7r, c7i,  
   d0r, d0i, d1r, d1i, d2r, d2i, d3r, d3i,  
   d4r, d4i, d5r, d5i, d6r, d6i, d7r, d7i,  
   t5r, t5i, t7r, t7i;  
 
 for (k2 = 0; k2 < c1; ++k2)  
 {  
  a0r = vIn.re[c1*0 + k2] * scale;  
  a0i = vIn.im[c1*0 + k2] * scale;  
  a1r = vIn.re[c1*1 + k2];  
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  a1i = vIn.im[c1*1 + k2];  
  a2r = vIn.re[c1*2 + k2];  
  a2i = vIn.im[c1*2 + k2];  
  a3r = vIn.re[c1*3 + k2];  
  a3i = vIn.im[c1*3 + k2];  
  a4r = vIn.re[c1*4 + k2];  
  a4i = vIn.im[c1*4 + k2];  
  a5r = vIn.re[c1*5 + k2];  
  a5i = vIn.im[c1*5 + k2];  
  a6r = vIn.re[c1*6 + k2];  
  a6i = vIn.im[c1*6 + k2];  
  a7r = vIn.re[c1*7 + k2];  
  a7i = vIn.im[c1*7 + k2];  
  b0r = a0r + a4r * scale;  // w = 1.  
  b0i = a0i + a4i * scale;  
  b1r = a1r + a5r;  
  b1i = a1i + a5i;  
  b2r = a2r + a6r;  
  b2i = a2i + a6i;  
  b3r = a3r + a7r;  
  b3i = a3i + a7i;  
  b4r = a0r -  a4r * scale;  
  b4i = a0i -  a4i * scale;  
  b5r = a1r -  a5r;  
  b5i = a1i -  a5i;  
  b6r = a2r -  a6r;  
  b6i = a2i -  a6i;  
  b7r = a3r -  a7r;  
  b7i = a3i -  a7i;  
  c0r = b0r + b2r * scale;  // w = 1.  
  c0i = b0i + b2i * scale;  
  c1r = b1r + b3r;  
  c1i = b1i + b3i;  
  c2r = b0r -  b2r * scale;  
  c2i = b0i -  b2i * scale;  
  c3r = b1r -  b3r;  
  c3i = b1i -  b3i;  
  c4r = b4r -  b6i * scale;  // w = i.  
  c4i = b4i + b6r * scale;  
  c5r = b5r -  b7i;  
  c5i = b5i + b7r;  
  c6r = b4r + b6i * scale;  
  c6i = b4i -  b6r * scale;  
  c7r = b5r + b7i;  
  c7i = b5i -  b7r;  
  t5r = c5r -  c5i;  
  t5i = c5r + c5i;  
  t7r = c7r + c7i;  
  t7i = c7r -  c7i;  
  d0r = c0r + c1r * scale;  // w = 1.  
  d0i = c0i + c1i * scale;  
  d1r = c0r -  c1r * scale;  
  d1i = c0i -  c1i * scale;  
  d2r = c2r -  c3i * scale;  // w = i.  
  d2i = c2i + c3r * scale;  
  d3r = c2r + c3i * scale;  
  d3i = c2i -  c3r * scale;  
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  d4r = + t5r * sqrt2d2 + c4r;  // w = sqrt(2)/2 * (+1+i).  
  d4i = + t5i * sqrt2d2 + c4i;  
  d5r = -  t5r * sqrt2d2 + c4r;  
  d5i = -  t5i * sqrt2d2 + c4i;  
  d6r = -  t7r * sqrt2d2 + c6r;  // w = sqrt(2)/2 * ( - 1+i).  
  d6i = + t7i * sqrt2d2 + c6i;  
  d7r = + t7r * sqrt2d2 + c6r;  
  d7i = -  t7i * sqrt2d2 + c6i;  
  vOut.re[c1*0 + k2] = d0r;  
  vOut.im[c1*0 + k2] = d0i;  
  vOut.re[c1*1 + k2] = d1r;  
  vOut.im[c1*1 + k2] = d1i;  
  vOut.re[c1*2 + k2] = d2r;  
  vOut.im[c1*2 + k2] = d2i;  
  vOut.re[c1*3 + k2] = d3r;  
  vOut.im[c1*3 + k2] = d3i;  
  vOut.re[c1*4 + k2] = d4r;  
  vOut.im[c1*4 + k2] = d4i;  
  vOut.re[c1*5 + k2] = d5r;  
  vOut.im[c1*5 + k2] = d5i;  
  vOut.re[c1*6 + k2] = d6r;  
  vOut.im[c1*6 + k2] = d6i;  
  vOut.re[c1*7 + k2] = d7r;  
  vOut.im[c1*7 + k2] = d7i;  
 }  
}  

 
FFT4_0WeightsScale  executes two more multiplications than FFT4_0Weights . These 
are necessary with this implementation of the reverse-DFT. For highest performance with 
the DFT, an implementation might either use FFT4_0Weights  or implement 
FFT4_0WeightsScale  in assembly language in a way that allows it to avoid the addi-
tional time for the unnecessary multiplications when doing a DFT. The same is true of 
FFT8_0WeightsScale . 

8.3 Changing the Kernels  
Having created these variants, it is necessary to use them. The kernel changes one last 
time: 
 

FFT Kernel with Scaling for Reverse Transform 
static void FFT_Kernel(  
 ComplexArray vOut,    // Address of output vector.  
 ComplexArray vIn,    // Address of input vector.  
 int N,      // N.  
 int direction,    // Transform direction.  
 const CommonWeight *weights,  // Common weight values.  
 const FinalIndices *finalIndices,// Index pairs.  
 const FinalWeights *finalWeights // Final weight va lues.  
)  
{  
 const float scale = direction == - 1 ? 1./(1<<N) : 1.;  
 
 int n, nLower, k0;  
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 if (N & 1)  
  FFT8_0WeightsScale(vOut, vIn, 1<<N, scale);  
 else  
  FFT4_0WeightsScale(vOut, vIn, 1<<N, scale);  
 
 nLower = N&1 ? 3 : 2;  
 for (n = nLower; n      < N - 4      ; n +=2      )  
  FFT4_0Weights(vOut, vOut, 1<<N - n);  
 
 for (k0 = 1    ; nLower < N - 4      ; nLower += 2)  
 for (          ; k0     < 1<<nLower; ++k0       )  
 for (n = nLower; n      < N - 4      ; n += 2     )  
  FFT4_1WeightPerCall(vOut, k0, 1<<N - n, weights[k0]);  
 
 if (n < N - 2)  
  FFT4_1WeightPerIteration(vOut, 1<<N - 4, weights);  
 
 FFT4_Final(vOut, 1<<N - 2, finalIndices, finalWeights);  
}  

 
FFT_MultipleStages  also changes: 
 

Multiple -Stage Kernel with Scaling for Reverse Transform 
static void FFT_MultipleStages(  
 ComplexArray vOut,    // Address of output vector.  
 ComplexArray vIn,    // Address of input vector.  
 int N,      // N.  
 int direction,    // Transform direction.  
 const CommonWeight *weights,  // Common weight values.  
 const FinalIndices *finalIndices,// Index pairs.  
 const FinalWeights *finalWeights // Final weight va lues.  
)  
{  
 const float scale = direction == - 1 ? 1./(1<<N) : 1.;  
 
 int m0 = N&1 ? 9 : 8;  
 
 FFT_FirstStage(m0, vOut, vIn, 1<<N, scale, weights) ;  
 
 if (0 < N -2- m0) 
  FFT_PenultimateStage(vOut, m0, N, weights);  
 
 FFT_FinalStage(vOut, 1<<N - 2, finalIndices, finalWeights);  
}  

 
The auxiliary routine FFT_FirstStage  must pass scale  along: 
 

FFT_FirstStage with Scaling for Reverse Transform 
static void FFT_FirstStage(  
 int m,      // log2 of butterfly radix.  
 ComplexArray vOut,    // Address of output vector.  
 ComplexArray vIn,    // Address of input vector.  
 int c0,      // Coefficient for c0.  
 float scale,     // Scale for reverse transform.  
 const CommonWeight weights[]  // Array of weight values.  
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)  
{  
 // Coefficient for k1 is coefficient for c0 divided  by 1<<m.  
 const int c1 = c0 >> m;  
 const int u1 = 1<<m;  
 
 // Cluster size is how many sets fit in buffer at o ne time.  
 const int cluster = b >> m;  
 
 int n, nLower, k0, k2;  
 
 // Process values of k2 in clusters.  
 for (k2 = 0; k2 < c1; k2 += cluster)  
 {  
  Gather(buffer, vIn, u1, c1, k2, cluster);  
 
  if (m & 1)  
   FFT8_0WeightsScale(buffer, buffer, b, scale);  
  else  
   FFT4_0WeightsScale(buffer, buffer, b, scale);  
 
  nLower = m&1 ? 3 : 2;  
  for (n = nLower; n      < m        ; n += 2     )  
   FFT4_0Weights(buffer, buffer, b>>n);  
 
  for (k0 = 1    ; nLower < m        ; nLower += 2)  
  for (          ; k0     < 1<<nLower; ++k0       )  
  for (n = nLower; n      < m        ; n += 2     )  
   FFT4_1WeightPerCall(buffer, k0, b>>n, weights[k0]);  
 
  Scatter(vOut, buffer, u1, c1, k2, cluster);  
 }  
}  

8.4 Alternatives  
Butterfly routines other than FFT4_0Weights  or FFT8_0Weights  could be chosen for per-
forming the scaling multiplications. A significant disadvantage of using any other routine 
is that all other routines include multiplications by weights and cannot incorporate the 
scaling multiplications without extra computations unless the scale is incorporated into 
the weights. This would require separate tables of weights for the forward-DFT and the 
reverse-DFT. If that is acceptable, then FFT4_Final  may be another good candidate for 
the scaling multiplications because: 
 
� It is used in only one pass (and we do not want to scale the data more than once). 
� It uses separate weights (so only the final weights have to be doubled for the forward- 

and reverse-DFT, not the common weights). 
� Its implementation might have some compute time available for additional multiplica-

tions, since the routine is burdened with loads, stores, and permutations of elements. 
 
When performing the DFT with the in-cache kernel, the data of the vector being trans-
formed is loaded only in the butterfly routines. Adding more loads of the data would hurt 
performance, so the scaling for the reverse-DFT must be incorporated into one of the but-
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terfly routines. In the multiple-stage kernel, the data is also loaded in the Gather  and 
Scatter  routines. Since these routines are memory copy operations and are free of com-
putations, they may be able to do the scaling multiplications with little or no extra time 
consumed. This possibility is not examined further in this paper. 

9 Executing the FFT 
All the parts that will execute the FFT have been designed. Now we need to call those 
parts, to design one central routine that will execute the entire FFT. This requires obtain-
ing the constants that the FFT will use, choosing the single-stage in-cache FFT_Kernel  or 
the out-of-cache FFT_MultipleStages , and executing the chosen routine. 

9.1 Constants  
To manage the constants, we use a structure that holds pointers to each of the types we 
need: 
 

ConstantsSet 
typedef struct {  
 const CommonWeight  *commonWeights;  
 const FinalWeights  *finalWeights;  
 const FinalIndices  *finalIndices;  
} ConstantsSet; 

 
Before calling FFT_Kernel  or FFT_MultipleStages , the FFT needs to get the constants. 
We will use a routine named GetConstants  to manage the tables. This routine will: 
 

• Allocate space for and generate any tables of constants needed. 
• Keep tables for future use. 
• Return existing tables when available rather than generating them again. 
• Keep one table of common weights for all lengths up to the longest requested 

length. 
• Keep one table of indices and one table of final weights for each requested length. 

 
For the common weights, a pointer to the existing table is kept in CommonWeights , and 
the longest vector length supported by that table is kept in CommonLength. Given a re-
quested to provide a table for a vector of length length , we compare it to CommonLength 
to see if the existing table is long enough. If it is not, we generate a new table. Then the 
table is returned in the structure of table pointers (or 1 is returned to indicate an error): 
 

if (CommonLength < length)  
 if (GenerateCommonWeights(&CommonWeights, &CommonLe ngth,  
   length) != 0)  
  return 1;  
set - >commonWeights = CommonWeights; 

 
For final pass indices, a separate table is needed for each supported vector length. So an 
array of pointers is kept in FinalIndices , and a method is needed to select an element in 



Construction of a High-Performance FFT 

82  2.1, August 8, 2004 

the table based on the vector length. The precise method is unimportant, and this state-
ment suffices to provide an element index given a vector length: 
 

const int hash = ilog2(length); 

 
Having selected an element in the array, we check it to see if there is already a table of 
indices for this vector length. If there is not, we generate one. Then the pointer to the ta-
ble is returned in the structure pointers: 
 

if (FinalIndices[hash] == NULL)  
 if (GenerateFinalIndices(&FinalIndices[hash], lengt h) != 0)  
  return 1;  
set - >finalIndices = FinalIndices[hash]; 

 
The preparation of the table of final-pass weights is similar. The complete routine is 
shown below. d is passed as a parameter but not used. This allows for the possibility that 
scaling for the reverse-DFT could be incorporated into the tables of weights in a modified 
design, and GetConstants  would need to return different tables for different values of d. 
 

GetConstants 
static int GetConstants(  
 ConstantsSet *set,  // Structure in which to return pointers.  
 int length,   // Length of vector to be transformed.  
 int d    // Direction of transform.  
)  
{  
 static CommonWeight  *CommonWeights = NULL;  
 static int   CommonLength = 0;  
 static FinalWeights  *FinalWeights[32] = { NULL };  
 static FinalIndices  *FinalIndices[32] = { NULL };  
 
 const int hash = ilog2(length);  
 
 if (CommonLength < length)  
  if (GenerateCommonWeights(&CommonWeights, &CommonLe ngth,  
    length) != 0)  
   return 1;  
 set - >commonWeights = CommonWeights;  
 
 if (FinalIndices[hash] == NULL)  
  if (GenerateFinalIndices(&FinalIndices[hash], lengt h) != 0)  
   return 1;  
 set - >finalIndices = FinalIndices[hash];  
 
 if (FinalWeights[hash] == NULL)  
  if (GenerateFinalWeights(&FinalWeights[hash], lengt h,  
    FinalIndices[hash]) != 0)  
   return 1;  
 set - >finalWeights = FinalWeights[hash];  
 
 return 0;  
}  
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9.2 FFT Routine  
Finally we can write our main FFT routine: 
 

FFT 
int FFT(  
 float *re,  // Address of real components.  
 float *im,  // Address of imaginary components.  
 int N,   // Base - two logarithm of length of vector.  
 int d   // Direction of transform.  
)  
{  
 ConstantsSet constants;  
 ComplexArray v(re, im);  
 
 /* To perform a transform in the reverse direction,  first  
  swap the real and imaginary components.  Scaling wi ll be  
  done later.  
 */  
 if (d < 0)  
  v = ComplexArray(im, re);  
 
 // This FFT does not support N < 4.  
 if (N < 4)  
  return 1;  
 
 /* This FFT does not support long vectors that over flow the  
  field size in the indices.  
 */  
 if (CHAR_BIT * sizeof constants.finalIndices - >read + 4 < N)  
  return 1;  
 
 / / Get the constants.  
 if (0 != GetConstants(&constants, 1<<N, d))  
  return 1;  
 
 // If n is small, do the single - stage FFT.  
 if (1<<N < 32768 / (sizeof *re + sizeof *im))  
  FFT_Kernel(v, v, N, d, constants.commonWeights,  
   constants.finalIndices, constants.finalWeights);  
 
 // If n is large, do the multiple - stage FFT.  
 else  
  FFT_MultipleStages(v, v, N, d, constants.commonWeig hts,  
   constants.finalIndices, constants.finalWeights);  
 
 return 0;  
}  

A Generating Radix-8 Butterfly with Maple 
The following Maple (version 7.00) code generates the assignment statements used in the 
weightless radix-8 butterfly (section 4.3.3), except that the use of t5r , t5i , t7r , and t7i  
was added manually to eliminate common subexpressions. 
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one(x)  is a convenient notation for e2 π i x. 
> one := x -> exp(2*Pi*I*x):  
 
r(n)  gives the number obtained by writing n in binary and rotating its bits around the bi-
nary point. 
> r := proc(n) option remember; 
   if n=0 then 0 else (irem(n,2)+r(iquo(n,2)))/2 fi end:  
 
vp(N, n, m, k)  gives the kth element of vn+m as an expression of elements in vn. 
E.g., for a 1024-element FFT, v(10, 3, 0, 4)  gives element four of the third pass in 
terms of original (pass zero) input elements, and v(10, 2, 1, 4)  gives element four of 
the third pass (2+1) in terms of elements in pass 2. 
> vp := proc(N, n, m, k) 
   local k0, k1, k2, j1; 
 
Separate k into bit fields of length n, m, and N-n-m. 
   k0 := iquo(k, 2^(N-n)); 
   k1 := iquo(irem(k, 2^(N-n)), 2^(N-n-m)); 
   k2 := irem(k, 2^(N-n-m)); 
Write vn+m,k as a sum of elements in vn. 
   v[n+m, k] = sum( 
         one(j1*r(k1)) * one(r(2^m*k0)) ^ j1 
         * v[n, 2^(N-n)*k0 + 2^(N-n-m)*j1 + k2], 
      j1=0 .. 2^m-1); 
end:  
 
ExpandParts  converts each reference to an element vn,k into real and imaginary parts 
with new names. The name takes the form <letter><number><part> , where: 
<letter>  is derived from n: 0 becomes a, 1 becomes b, etc. 
<number>  is the value of k. 
<part>  is “r ” or “ i ” for real or imaginary. 
For example, v[2, 4]  is converted to b4r + I*b4i . 
> ExpandParts := proc(e) 
Apply the procedure x-> … to each occurrence of v[integer, anything]  in the expres-
sion e. 
   subsindets(e, v[integer, anything], 
x-> … applies y-> … to the ̀r`  and the ̀i`  in ̀ r`+I*`i` . 
      x -> subsindets(`r`+I*`i`, symbol, 
y-> … concatenates a null string (to ensure string type), a letter derived from the first sub-
script of x , the value of the second subscript of x , and the name in y  (which is ̀r`  or 
`i` ). 
         y -> cat(``, StringTools[Char](97+op(1, x)), 
            op(2, x), y) 
      ) 
   ); 
end:  
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ExpandPartsCompound  separates, expands, and simplifies the real and imaginary parts of 
a list of equations. 
ExpandParts  is applied to the list, and then each object in the list is replaced with two 
objects, one for its real components and one for its imaginary components. 
Since each object in the list is expected to be an equation, and Re and Im cannot be ap-
plied to equations, map is used to apply Re and Im to the parts of the object. 
> ExpandPartsCompound := proc(l) 
Third, simplify the expression to get the separate components. 
   evalc(map( 
Second, request the real and imaginary components. 
      t -> (map(Re, t), map(Im, t)), 
First, expand and rename the real and imaginary parts. 
      ExpandParts(l) 
   )): 
end:  
 
Use vp  to express each element k of each radix-2 pass n of a 23-element FFT in terms of 
elements of the previous pass. 
> t0 := subs(N=3, '[seq(seq(vp(N, n-1, 1, k), k=0..2^N-1), 
   n=1..N)]'):  
 
Print each equation “linearly,” suitable for cutting and pasting. 
> map(lprint, ExpandPartsCompound(t0)):  
b0r = a0r+a4r 
b0i = a0i+a4i 
b1r = a1r+a5r 
b1i = a1i+a5i 
b2r = a2r+a6r 
b2i = a2i+a6i 
b3r = a3r+a7r 
b3i = a3i+a7i 
b4r = a0r - a4r 
b4i = a0i - a4i 
b5r = a1r - a5r 
b5i = a1i - a5i 
b6r = a2r - a6r 
b6i = a2i - a6i 
b7r = a3r - a7r 
b7i = a3i - a7i 
c0r = b0r+b2r 
c0i = b0i+b2i 
c1r = b1r+b3r 
c1i = b1i+b3i 
c2r = b0r - b2r 
c2i = b0i - b2i 
c3r = b1r - b3r 
c3i = b1i - b3i 
c4r = b4r - b6i 
c4i = b4i+b6r 
c5r = b5r - b7i 
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c5i = b5i+b7r 
c6r = b4r+b6i 
c6i = b4i - b6r 
c7r = b5r+b7i 
c7i = b5i - b7r 
d0r = c0r+c1r 
d0i = c0i+c1i 
d1r = c0r - c1r 
d1i = c0i - c1i 
d2r = c2r - c3i 
d2i = c2i+c3r 
d3r = c2r+c3i 
d3i = c2i - c3r 
d4r = c4r+1/2*2^(1/2)*c5r - 1/2*2^(1/2)*c5i 
d4i = c4i+1/2*2^(1/2)*c5i+1/2*2^(1/2)*c5r 
d5r = c4r - 1/2*2^(1/2)*c5r+1/2*2^(1/2)*c5i 
d5i = c4i - 1/2*2^(1/2)*c5i - 1/2*2^(1/2)*c5r 
d6r = c6r - 1/2*2^(1/2)*c7r - 1/2*2^(1/2)*c7i 
d6i = c6i - 1/2*2^(1/2)*c7i+1/2*2^(1/2)*c7r 
d7r = c6r+1/2*2^(1/2)*c7r+1/2*2^(1/2)*c7i 
d7i = c6i+1/2*2^(1/2)*c7i - 1/2*2^(1/2)*c7r 

B Notes About C Source Code 

B.1 Indentation  
Because there is a limited width available to display code in this paper, I contract some of 
normal indenting when showing loops or conditional statements. For example, code that 
is more usually written: 
 

for (k0 = l0; k0 < u0; ++k0)  
 for (k1 = l1; k1 < u1; ++k1)  
  for (k2 = l2; k2 < u2; ++k2)  
   function(k0, k1, k2); 

 
may instead be written: 
 

for (k0 = l0; k0 < u0; ++k0)  
for (k1 = l1; k1 < u1; ++k1)  
for (k2 = l2; k2 < u2; ++k2)  
 function(k0, k1, k2); 

 
I hope the reader will not find this confusing. The latter set of loops might be thought of 
as one three-dimensional loop instead of three one-dimensional loops. 

B.2 Complex Number Representation  
The code displays use a type complex  that is not defined in this paper but implements 
normal complex arithmetic. 
 
C++ implementations of complex  and ComplexArray  are given in the demonstration 
code that supplements this paper. These implementations provide convenience features 
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that make the demonstration code appear simple but would be atrocious to implement in a 
real application. Those features solely illustrate the design, particularly the intermediate 
stages of development. None of them are needed in a final implementation. 

B.3 Memory Allocation and Alignment  
The routines for generating weights are shown using realloc  to allocate memory. In an 
AltiVec implementation, these arrays should be aligned to multiples of 16 bytes, and so 
an allocation routine that guarantees this should be used, such as the vec_realloc  de-
scribed in Motorola’s AltiVec: The Programming Interface Manual. 

B.4 Bit -Reversed Bytes  
This code generates the table of bit-reversed bytes in routine rw  in section 5.2: 
 

Generate Bit-Reversed Bytes for rw 
#include <stdio.h>  
 
static int rw(int i) {  
 int r, t;  
 for (r = t = 0; t < 8; ++t, i>>=1)  
  r = r << 1 | i & 1;  
 return r;  
}  
 
int main(void) {  
 int i;  
 for (i = 0; i < 256; ++i)  
  printf("%3d,%c", rw(i), i % 16 == 15 ? ' \ n' : ' ');  
 return 0;  
}  


